

M A R M A R A U N I V E R S I T Y

I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

 S O L V I N G D Y N A M I C G R A P H C O L O R I N G

P R O B L E M B Y U S I N G A H E U R I S T I C

A L G O R I T H M

GİZEM SÜNGÜ

MASTER THESIS

Department of Computer Engineering

ADVISOR

Asst . Prof . Dr. Betül Demiröz Boz

ISTANBUL, 2018

M A R M A R A U N I V E R S I T Y

I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

S O L V I N G D Y N A M I C G R A P H C O L O R I N G

P R O B L E M B Y U S I N G A H E U R I S T I C

A L G O R I T H M

GİZEM SÜNGÜ

(524115014)

MASTER THESIS

Department of Computer Engineering

ADVISOR

Asst . Prof . Dr. Betü l Demiröz Boz

ISTANBUL, 2018

i

ACKNOWLEDGMENT

I would like to express my gratitude to my thesis supervisor, Asst. Prof. Dr. Betul

Demiroz Boz, for her inspirational and heartening guidance throughout my graduate study

that helped me to harden my motivation for completing this research.

I want to thank Prof. Haluk Topcuoglu, Assc. Prof. Erdoğan Sevilgen and Assc.

Prof. Didem Gözüpek for participating in my thesis committee and giving me feedback.

January, 2018 Gizem SÜNGÜ

ii

TABLE OF CONTENTS

 PAGE

ACKNOWLEDGMENT .. i

TABLE OF CONTENTS .. ii

ÖZET...iv

ABSTRACT .. v

SYMBOLS ..vi

ABBREVIATIONS .. vii

LIST OF FIGURES ... viii

LIST OF EQUATIONS .. ix

1. INTRODUCTION ... 1

2. PROPOSED WORK ... 5

2.1. Dynamic Graphs .. 6

2.2. Graph Initialization ... 7

2.3. Graph Generation .. 8

2.3.1. Node-Dynamic Graph Generation .. 8

2.3.2. Edge-Dynamic Graph Generation ... 10

2.4. Population Initialization .. 11

2.5. Crossover Operation .. 12

2.5.1. Crossover Methods for Graph Coloring Problem ... 12

2.5.2. Crossover Methods for Dynamic Graph Coloring Problem .. 13

2.5.3. Dynamic Pool-Based Crossover Operator .. 15

2.6. Local Search .. 21

2.6.1. Related Works About Local Search Methods for Graph Coloring Problem 21

2.6.2. Related Works About Local Search Methods for Dynamic Graph Coloring Problem 22

2.6.3. Local Search Operator ... 23

2.7. Fitness Calculation .. 27

2.8. Placement of The Offspring In the Population .. 29

2.9. Update of Individuals with Changes of Graph .. 29

3. EXPERIMENTAL STUDY .. 31

3.1. Node-Dynamic Graphs .. 32

iii

3.2. Edge-Dynamic Graphs .. 38

4. CONCLUSION ... 47

5. FUTURE WORK .. 48

6. REFERENCES .. 49

RESUME ... 1

iv

ÖZET

Sezgisel Bir Algoritma Kullanarak Dinamik Grafik Renklendirme

Problemi Çözme

Grafik renklendirme problemi literatürdeki en popüler optimization

problemlerinden biridir. Problemin grafiklerle modellenebilen bir çok gerçek probleme

uygulunabilmesi, grafik renklendirme problemini önemli kılmaktadır. Problemin

polinom zamanda henüz bir çözümünün bulunamaması, bu problem için bir çok sezgisel

algoritmanın geliştirilmesine sebep olmuştur. Ancak geliştirilen bu sezgisel algoritmalar

dinamik grafiklerdeki renklendirme problemlerine uyum sağlayamamıştır.

Dinamik grafiklerdeki renklendirme problemi dinamik grafik renklendirme

problemi olarak adlandırılmış ve bir kaç senedir üzerinde çalışmalar yapılmaya

başlanmıştır. Bu sebeple, literatürde bu yeni keşfedilen problem için az sayıda sezgisel

algoritma bulunmaktadır.

Bu çalışmada, dinamik grafik renklendirme problemini çözmek amacıyla bir

evrimsel algoritma geliştirilmiştir. Algoritma belirlenen bir zaman aralığında değişen

dinamik grafikleri dikkate almaktadır ve bu değişimlere kolayca uyum

sağlayabilmektedir. Algoritma literatürde yer alan ve dinamik grafik renklendirme

problemi için geliştirilen iki sezgisel algoritma ile birlikte çeşitli senaryolara sahip bir çok

dinamik grafik üzerinde test edilmiştir ve bu çalışmada sunulan algoritmanın bir çok

durumda diğer algoritmalardan daha iyi sonuçlar elde ettiği görülmüştür.

January, 2018 Gizem SÜNGÜ

v

ABSTRACT

Solving Dynamic Graph Coloring Problem by Using A Heuristic

Algorithm

Graph coloring problem is one of the most popular optimization problem in the

literature. The problem can be applied to solve many real-world problems that are

modeled by using graphs. Since graph coloring problem is an NP-hard problem, there are

many heuristic algorithms to solve the problem in different domains. However, these

heuristic solutions are for solving static graphs and they are hard to be adapted in dynamic

graphs.

Graph coloring problem in dynamic graphs is called dynamic graph coloring

problem and this problem has been explored for the last few years. Therefore, there are

only a few and recently proposed heuristic algorithms to solve the dynamic graph coloring

problem in the literature.

In this study, we propose an evolutionary algorithm for solving dynamic graph

coloring problem. The algorithm considers dynamic graphs changing over a given

number of time steps. It adapts to the changes in the graph with its novel pool-based

crossover operator easily. We tested our algorithm with two heuristic methods for

dynamic graph coloring problem in the literature on dynamic graphs which have different

characteristics and compared the solutions of the algorithms. The results show that our

algorithm outperforms these two algorithms in most of the test cases given.

January, 2018 Gizem SÜNGÜ

vi

SYMBOLS

Gt : Graph at time t

V : Set of nodes

E : Set of edges

cv : Node probability

ce : Edge probability

n : Number of nodes

tmin : Minimum lifetime of an edge or a node

tmax : Maximum lifetime of an edge or a node

Pop : Population

Si : ith individual in the population

GraphChangeStep : Total times of changing graph

IterationNum : Number of iterations at each time t

ki : Number of color classes of ith individual

Ci
j : jth color class of ith individual

vua : Unassigned node

va : Assigned node

vp : The node in the pool

Cmin : The color class which has the minimum number of nodes in the individual

vii

ABBREVIATIONS

GCP : Graph Coloring Problem

DPBEA : Dynamic Pool Based Evolutionary Algorithm

DGA : Dynamic Genetic Algorithm

DSATUR : Degree of Saturation

TABUCOL : Tabu Search Coloring

SA : Simulated Annealing

DPBC : Dynamic Pool Based Crossover

PBC : Pool Based Crossover

DGCP : Dynamic Graph Coloring Problem

OX1 : Order 1

OX2 : Order 2

PMX : Partially mapped Crossover

GPX : Greedy Partition Crossover

AMPaX : Adaptive Multi-Parent Crossover

DGC : Diversification-guided Crossover

GGX : Grouping-guided Crossover

MGPX : Multi-parent Crossover

FOO-PARTIALCOL : Fluctuation Of the Objective-function Partial Coloring

AMACOL : Adaptive Memory Algorithm Coloring

MACOL : Memetic Algorithm Coloring

ATS : Adaptive Tabu Search

DNTS : Double Neighborhood Tabu Search

IDTS : Iterated Double Phase Tabu Search

viii

LIST OF FIGURES

Figure 2. 1 – Main Scheme of Pool-Based Evolutionary Algorithm 5

Figure 2. 2 – Initialization of G1(V, E) ... 7

Figure 2. 3 – Generation of Node-Dynamic Graph at time t+1 9

Figure 2. 4 – State of node-dynamic graphs at time steps t and t+1 9

Figure 2. 5 – Generation of Edge-Dynamic Graph at time t+1 10

Figure 2. 6 – State of edge-dynamic graphs at time steps at t and t+1 11

Figure 2. 7 – Population Initialization ... 12

Figure 2. 8 – Example of OX1 [26] ... 14

Figure 2. 9 – Dynamic Pool-Based Crossover Operation .. 16

Figure 2. 10 – Clear Pool .. 17

Figure 2. 11 – Example of pool based crossover operation according to node-dynamic

graph Gt in Figure 2.1 (a) .. 19

Figure 2. 12 – Results from Gt in Figure 2.1 (a) Error! Bookmark not defined.

Figure 2. 13 – Results from Gt+1 in Figure 2.1 (a) ... 20

Figure 2. 14 – Example of SWAP Operation ... 22

Figure 2. 15 – Local Search Operation in [39] .. 23

Figure 2. 16 – Local Search Operation .. 24

Figure 2. 17 – Example of Pool Based Crossover Operation According to Edge

Dynamic Graph Gt+1 in Figure 2.2 (b) .. 26

Figure 2. 18 – Example of Local Search Operation According to Edge Dynamic

Graph Gt+1 in Figure 2.2 (b) .. 27

Figure 2. 19 – Results from Gt +1 in Figure 2.2 (b) ... 27

Figure 2. 20 – Placement of Offspring ... 29

Figure 2. 21 – The best solution of DPBEA for Gt in Figure 2.2 (a) 29

Figure 2. 22 – Adapting DPBEA individual in Figure 2.11 according to the changes

between Gt and Gt +1 in Figure 2.2 ... 30

Figure 2. 23 – Adapting DPBEA individual in Figure 2.11 according to the changes

between Gt and Gt +1 in Figure 2.1 ... 30

Figure 3. 1 – Varying evolution steps (e) for node-dynamic graphs 33

Figure 3. 2 – Varying cv values ... 34

Figure 3. 3 – Varying p values for node-dynamic graphs ... 35

Figure 3. 4 – Varying node values .. 36

file:///C:/Users/Gizem/Desktop/GizemTez.docx%23_Toc506370923

ix

Figure 3. 5 – Results of the algorithms from the node-dynamic graph with n=100 at

each time step t ... 37

Figure 3. 6 – Varying evolution steps (e) for edge-dynamic graphs when n=100 40

Figure 3. 7 – Varying evolution steps (e) for edge-dynamic graphs when n=200 40

Figure 3. 8 – Varying evolution steps (e) for edge-dynamic graphs when n=300 41

Figure 3. 9 – Varying evolution steps (e) for edge-dynamic graphs when n=400 41

Figure 3. 10 – Varying ce values when n=200 .. 42

Figure 3. 11 – Varying ce values when n=300 .. 43

Figure 3. 12 – Varying ce values when n=500 .. 43

Figure 3. 13 – Varying p values for edge-dynamic graphs when n=100..................... 44

Figure 3. 14 – Varying p values for edge-dynamic graphs when n=200..................... 44

Figure 3. 15 – Varying p values for edge-dynamic graphs when n=400..................... 45

Figure 3. 16 – Varying p values for edge-dynamic graphs when n=500..................... 45

Figure 3. 17 – Results of the algorithms when an edge-dynamic graph is becoming

fully connected step by step ... 46

LIST OF EQUATIONS

Equation 2. 1 – Computation of fitness function ... 28

1

1. INTRODUCTION

Graph coloring problem (GCP) is a well-known optimization problem. The problem

can be described with an undirected graph G (V, E) which has a set of vertices (nodes) V

= {v1, v2, …, vn} where n denotes number of nodes in the set and a set of edges

𝐸 ⊂ 𝑉 × 𝑉 which contains edges between any two nodes vx and vy that exist in V, where

x ≠ y. Graph coloring problem (GCP) colors the nodes with the rule that any two nodes

that are connected by an edge do not have the same color. Main objective of the problem

is to minimize number of different colors used in the given graph. GCP is proven as NP-

hard problem [1].

GCP is applicable for many real-world problems that can be modeled by using static

graphs such as time tabling and scheduling [2, 3], frequency assignment [4], register

allocation [5, 6, 7, 8] circuit testing [9] and many others. GCP is specialized according to

components of these problems and there are many studies to solve the problems in the

literature.

These studies can be separated into two kinds of approaches. The first approach has

exact algorithms such as [10, 11, 12] that are preferred to use for small graphs. The exact

algorithms are successful to find the best solutions of small graphs whereas they spend

too much computation time to find the best solutions of large graphs. Hence, there are a

lot of heuristic algorithms as the another approach to solve GCP in large graphs such as

greedy [13], local search [14], genetic [15] and evolutionary algorithms [16].

The first heuristic approach for GCP is Degree of Saturation(DSATUR) [13] which

is still one of the most powerful algorithms for the problem. DSATUR sorts the nodes in

a given graph according to their degrees and colors them starting from the node having

the maximum number of degrees. Since the method builds only one solution with its

distinct rules, its search area is small to explore other solutions for the given graph.

Local search is also one of the oldest approaches for GCP in the literature and it has

larger search area than DSATUR. The method basically improves a given solution in a

predefined number of iterations. The first metaheuristic as local search method for GCP

is proposed in [17] and continued by many studies such as TABUCOL [14], FOO-

PARTIALCOL [18], AMACOL [19], MACOL [20], ATS [21], DNTS [22] and IDTS

2

[23]. This operator searches neighborhood solutions of a given individual and tries to find

the best neighborhood solution of the given individual according to the considered graph.

However, if the given graph has a large number of instances with its nodes and edges,

i.e., for 500 nodes, there are many neighborhood solutions for the graph. Since the given

individual may be so far from its best neighborhood solution, local search may spend long

computation time to find the best solution. In this situation, using “pure” local search for

GCP becomes a poor approach and it should be combined with a recombination heuristic

operator to use it efficiently [24]. In order to solve the bottleneck of local search methods,

evolutionary algorithms have been explored and improved for GCP in the literature.

Evolutionary algorithms are heuristic methods that are blended of local search

operators and specialized recombination operators (crossover) for GCP. The algorithms

use two given solutions (parents) and recombine them to generate a new solution

(offspring). A local search method is applied to the new solution for improving. This

process repeats for a predefined number of iteration steps. Thanks to these iterations,

evolutionary algorithms get closer to the best solution step by step in a desired

computation time.

The first evolutionary algorithm [25] is developed with a crossover that is named

order-based crossover that uses order-based represented individuals. After that, more

crossover operators with order-based approach for evolutionary algorithms, have been

proposed in [26]. Since evolutionary algorithms with order-based approach have not been

more successful than pure local search, techniques of crossover operators are improved

and color-oriented crossover (partition-based crossover) is established [16]. This

crossover method that uses partition-based represented individuals, outperforms the

order-based crossover and evolutionary algorithms with partition-based crossover

becomes the most popular approach for GCP. Finally, these evolutionary algorithms are

specialized for many real-world problems based on GCP such as [6, 27] and many others,

thanks to its adaptation.

 The purposed heuristic algorithms in the literature are widely used and improved

for GCP problems which are modeled by static graphs. However, there are also many

real-world graph coloring problems that change over time [28] and these problems can be

modeled by dynamic graphs such as crew scheduling [29], dynamic resource allocation

3

[30]. Dynamic GCP (DGCP) has been studied for the last few years and only a few

solutions are proposed by using graph theory [31] and heuristic algorithms [32, 33].

 In this study, we purpose an evolutionary algorithm for DGCP. Each individual in

the population is represented with partition-based method [16] having nonconflicting

nodes. When the graph changes, some of the nodes or the edges are added or removed

from the graph and our algorithm can easily adopt to these changes. When deleting the

nodes from the graph, the nodes are removed from their partitions in the individual

without changing the current non-conflicting groups. When adding new nodes to the

graph, new partitions (color classes) are added to the individual for each newly added

node. In case of adding edges between the nodes, the algorithm checks the endpoints

(nodes) of each newly added edge whether these nodes are in the same partition of the

individual or not. If they are, then the algorithm separates the nodes by adding a new

partition for one of them. Our algorithm is able to keep the valuable information obtained

in history and reshape this information with the current state of the graph. The number of

partitions represent the number of colors used to color the graph, and the solution quality

of each individual is different so the number of partitions in each representation is also

dynamic.

We propose a highly specialized and novel crossover operator that can easily deal

with the dynamic representation of the individuals. It targets to maximize the number of

non-conflicting nodes in the graph and place them to the same partition. The nodes having

conflicts can not be directly placed in a partition so a pool is proposed to keep these nodes

and place them to the most appropriate partition as soon as possible. As a result, the

proposed pool-based crossover operator can easily adopt to the dynamic changes of the

graph. When we try to maximize the number of non-conflicting nodes in the partitions,

we are also decreasing the search area, so to increase the diversity of the solutions in the

population, we propose a local search method for checking the neighborhood solutions.

We conduct experiments with dynamic graphs to test the effectiveness of the

proposed solution. The performance of our solution is compared with Degree of

Saturation (DSATUR) [13] which is a well known and efficient greedy heuristic for

solving the graph coloring problem and DGA [32] which is the first and recently

published genetic algorithm that solves the dynamic graph coloring problem. DGA

4

proposes a dynamic population that includes individuals with permutation based

representation. It uses a standart crossover operator OX1 [26] and a mutation operator

SWAP [34]. They mainly concentrate on the dynamics of the problem and dynamics of

the algorithm and proposed populations suitable for dynamic graph coloring problem, so

their genetic algorithm is pure and straightforward. Our experimental evaluation indicates

that we have outperformed both algorithms from the literature.

5

2. PROPOSED WORK

In the dynamic graph coloring problem, the dimension time is added to the graph

so it changes over time. In our approach, only the current state of the graph is known and

the solution from evolutionary algorithm is generated according to this state. The problem

representation and operators of our algorithm are designed such that it can adopt to the

dynamic changes of the graph.

Input: Node probability cv, edge density p, edge probability ce, initial graph size n, minimum lifetime of

an edge or a node tmin, maximum lifetime of an edge or a node tmax, number of iterations for each graph at

time t IterationNum, total time of changing graph Gt GraphChangeStep, size of population PopSize.

Output: The best solution for each Gt.

Initialization: Input graph G1 ← ⦰, initial population Pop ← ⦰, an offspring S0 ← ⦰.

1. G1 ← InitializeGraph (n, tmin, tmax, p)

2. Pop ← InitializePopulation (G1, PopSize, n)

3. for t ← 1 to GraphChangeStep do

4. for i ← 1 to IterationNum do

5. Select two parents S1 and S2 from Pop.

6. Calculate number of color classes of S1 and S2 as k1 and k2

7. S0 ← CrossoverOperation (Gt, S1, S2, k1, k2)

8. S0 ← LocalSearch (Gt, S0)

9. Pop ← UpdatePop (S1, S2, S0)

10. end for

11. if Is Gt an edge-dynamic graph then

12. Initialize a set for added edges E+: E+ ← ⦰
13. Gt+1, E+ ← GenerateEdgeDynamic (Gt, n, ce, p, tmin, tmax)

14. Update the individuals in Pop according to E+
15. else

16. Initialize two sets for added and removed nodes: V+ ← ⦰, V- ← ⦰

17. Gt+1, V+, V- ← GenerateNodeDynamic (Gt, n, ce, p, tmin, tmax)

18. Update the individuals in Pop according to V+ and V-

19. end if

20. end for

Figure 2. 1 – Main Scheme of Pool-Based Evolutionary Algorithm

The main scheme of our evolutionary algorithm is shown in Figure 2.1. The

algorithm starts to create an initial graph with a predefined number of nodes n at time step

t=1. According to the initial graph, an initial population is created. Each individual in the

initial population has n number of color classes and all of them have the worst fitness

value at the beginning.

After the initilization step, the algorithm repeats the following process with a given

number of time steps as GraphChangeStep in order to obtain the best solution according

to its fitness value for each graph that is generated at time step t as Gt. At each time step

t (1 ≤ t ≤ GraphChangeStep), a predefined number IterationNum of offsprings are

6

produced by using individuals from the population. At each iteration step i, (1 ≤ i ≤

IterationNum), two parents are selected randomly from the population. The crossover and

local search methods are applied to these two parents and a new offspring is generated.

After the new offspring is obtained, the fitness value of the offspring is calculated. The

offspring is always replaced with the parent having the worst fitness value.

When the algorithm reaches IterationNum, the graph of the next time step t+1 as

Gt+1 is generated. If Gt is an edge-dynamic graph, the edges in Gt which reached the end

of their lifetimes, are removed from Gt+1 and new edges are added to Gt+1. If Gt is a node-

dynamic graph, the nodes in Gt which reached the end of their lifetimes are removed from

Gt+1 and new nodes are added to Gt+1. All individuals in the population should be adapted

to the changes in Gt+1 before starting iterations of the next time step t+1. In the case of

node-dynamic, each node removed from Gt+1 are also removed from the individuals, and

a new color class is created for each new node in Gt+1 in all of the individuals in the

population. In case of edge-dynamic, only newly generated edges are considered. Each

two nodes which are two sides of each new edge, are checked if they are in the same color

class or not in each individual. If it is yes, one of them is removed from the color class

and added a newly created color class in the individual. After these revisions, the

population is ready for the next time step t+1.

In the following subsections, the components of our algorithms are detailed.

2.1. Dynamic Graphs

A dynamic graph of dynamic graph coloring problem is created at initial time step

t=1 and exists during the given set of time steps T where T = {1, 2, ..., GraphChangeStep}.

At each time step t, (1 < t ≤ GraphChangeStep), some components of a dynamic graph

are changed after the graph is created according to given input parameters.

Dynamic graphs are specialized and varied based on their changing components.

According to this, there are five dynamic graph models that are described in [35]. Two

types of these dynamic graphs are considered for DGCP in this study as edge-dynamic

graphs and node-dynamic graphs. Each graph is shown as Gt (V, E) where V and E are

the set of nodes and the set of edges that exist at time step t, (1 ≤ t ≤ GraphChangeStep),

respectively.

7

2.2. Graph Initialization

The general procedure of this study begins with creating an input graph to describe

a given dynamic graph coloring problem. This graph is initialized at time step t=1 as the

first graph G1(V, E) of various dynamic graphs that are derived from each other in a given

number of time steps as GraphChangeStep. G1(V, E) has a set of nodes V whose size is

a predefined number n, and a set of edges which are created randomly between the nodes

in V with an edge density p.

Input: Initial graph size n, minimum lifetime of a node tmin, maximum lifetime of a node tmax, edge density

p

Output: Input graph G1 (V, E)

Initialization: An empty node set V ← ⦰, an empty edge set E ← ⦰, input graph G1 (V, E) ← ⦰

1. for i ← 1 to n do

2. Create a new node vi and add vi to V

3. if Is G1 a node-dynamic graph then

4. Set a lifetime tvi that is generated randomly between tmin and tmax

5. end if

6. for j ← i-1 to 1 do

7. Generate a random number rand between 0 and 1

8. if rand < p then

9. Generate an edge between ith node vi and jth node vj

10. if Is G1 an edge-dynamic graph then

11. Set a lifetime te that is generated randomly between tmin and tmax

12. end if

13. Add the edge to E

14. end if

15. end for

16. end for

Figure 2. 2 – Initialization of G1(V, E)

The algorithm in Figure 2.2 to initialize G1 takes some input parameters as a

predefined node size n, the minimum life time of a node tmin, the maximum lifetime of a

node tmax and an edge density p. At the initialization part, empty node set V and edge set

E are created so G1 is composed with V and E. The algorithm creates nodes and their

edges in G1 (V, E) step by step. At each step i (1 ≤ i ≤ n), a new node vi is created and

added to V. If a node-dynamic graph is initialized, a lifetime is set randomly between tmin

and tmax for vi. Throughout this lifetime, vi exists on the graph. Otherwise, vi stays on the

graph during the existence of the graph. Edges between vi and other nodes that are created

previously in V are generated by using p (see in Figure 2.2). If the initialized graph is

edge dynamic, a lifetime is set randomly between tmin and tmax for each edge. Throughout

this lifetime, the edge exists on the graph. Otherwise, lifetime of the edge depends on

8

existences of its endpoints. This process is repeated until n nodes is generated with their

edges.

2.3. Graph Generation

In order to generate a dynamic graph at time step t (t > 1), the graph that is generated

at previous time t-1 is referred and the related components of the graph are changed

depending on some parameters. These parameters and their descriptions are given at

Section 3.

In type of node-dynamic graph model, the nodes in a given graph are dynamically

changed with adding and removing operators in a given number of time steps

GraphChangeStep. Their edges are also dynamically added or removed when the nodes

are added or removed respectively.

In type of edge-dynamic graph model, the nodes that are created at time step t=1 are

not removed from the graph during a given number of time steps GraphChangeStep. New

nodes are also not added to the graph in the next time steps. Whereas the nodes are

protected throughout existence of the graph, edges in the graph are dynamically changed

with adding and removing with some input parameters which are predefined values, at

each time step t (1 < t ≤ GraphChangeStep).

2.3.1. Node-Dynamic Graph Generation

In this graph model, set of nodes V are changed with a given number of time steps.

At each time step t, the nodes are in the graph Gt (V, E) are checked and their lifetimes

are decreased by one. The ones that have reached the end of their lifetimes are removed

with their edges from Gt (V, E). At the same time step, new nodes are added to Gt (V, E)

with graph change rate cv. A lifetime is set randomly to each newly added node between

two parameters tmin and tmax. Number of added nodes are determined with multiplying

initial number of nodes n and cv, n x cv. When each new node is added, all of the existing

nodes on Gt (V, E) are examined and a new edge is created between the newly added node

and an existing node with an edge density p. Generating the node-dynamic graph for the

next time step t+1 is detailed in Figure 2.3.

An example of how to change a node-dynamic graph between two time steps t and

t+1 is shown in Figure 2.4 (a) and Figure 2.4 (b) respectively. At time step t, Gt has 15

9

nodes. At time step t+1, after decreasing lifetimes of all nodes by one, node1 has reached

the end of its lifetime. Therefore, node1 is removed with its edges edge(1, 2), edge(1, 3),

edge(1, 5), edge(1, 6) and edge(1, 11). At the addition part, node15 is added according to

cv and its edges with node2 and node5 are created with using density p. These example

graphs are also used to describe our algorithm and to compare its performance with the

algorithm from literature in the further sections.

Input: The dynamic graph Gt that is generated at time t, initial graph size n, node probability cv, edge

density p, minimum lifetime of a node tmin, maximum lifetime of a node tmax

Output: The dynamic graph Gt+1 that is generated at current time t+1, set of added nodes V+, set of removed

nodes V-

Initialization: Gt+1 ← Gt, V+ ← ⦰, V-
 ← ⦰, number of current nodes N ← |V|

1. for each node v in Gt+1 do

2. Decrease the lifetime of v: tv ← tv - 1

3. if tv = 0 then

4. Remove v and its edges from Gt+1

5. Add v to V-: V- ← V- U v

6. end if

7. end for

8. Set number of nodes nadded that will be added to Gt+1: nadded ← n x cv

9. for i ← 1 to nadded do

10. Create a new node vnew and add vnew to Gt+1

11. Set a lifetime that is generated randomly between tmin and tmax for vnew

12. Add vnew to V+: V+ U vnew

13. end for
14. Set number of nodes in Gt+1 as N: N ← N + nadded

15. for i ← 1 to N - 1 do

16. for j ← i + 1 to N do

17. Generate a random number rand between 0 and 1

18. if rand < p then

19. Create an edge between ith node vi and jth node vj in Gt+1

20. end if

21. end for

22. end for

Figure 2. 3 – Generation of Node-Dynamic Graph at time t+1

Figure 2. 4 – State of node-dynamic graphs at time steps t and t+1

10

2.3.2. Edge-Dynamic Graph Generation

In this graph model, set of edges E is changed with a given number of time steps

and set of nodes V is not changed during the existence of the given graph. At each time

step t, the edges are in the graph Gt (V, E) are checked and their lifetimes are decreased

by one. The edges that have reached the end of their lifetimes are removed from the set

of edges E of Gt (V, E). At the same time step, n x (n-1) x p x ce ÷ 2 new edges are added

to Gt (V, E) with edge probability ce until Gt (V, E) does not become a fully connected

graph. A lifetime is set randomly to each newly added edge between two parameters tmin

and tmax. Generation of an edge-dynamic graph for the next time step t+1 is detailed in

Figure 2.5.

Input: The dynamic graph Gt that is generated at previous time t, initial graph size n, edge probability ce,

edge density p, minimum lifetime of a node tmin, maximum lifetime of a node tmax

Output: The dynamic graph Gt+1 that is generated at current time t + 1, set of added edges E+

Initialization: Gt+1 (V, E) ← Gt (V, E), E+ ← ⦰

1. for each edge e in E of Gt+1 do

2. Decrease the lifetime of e: te ← te - 1

3. if te = 0 then

4. Remove e from Gt+1: E ← E / e

5. end if

6. end for

7. Set number of edges eadded that will be added to Gt+1: eadded ← n x (n - 1) x p x ce ÷ 2

8. for i ← 1 to eadded do

9. if Is Gt+1 fully connected then

10. break

11. end if
12. Select two nodes vx and vy /exists Gt+1

13. while e (vx, vy) in Gt+1 do

14. Select two nodes vx and vy /exists Gt+1

15. end while

16. Create a new edge between vx and vy e (vx, vy)

17. Add e (vx, vy) to E of Gt+1: E ← E U e (vx, vy)

18. Set a lifetime that is generated randomly between tmin and tmax for e (vx, vy)

19. Add e (vx, vy) to E+: E+ ← E+ U e (vx, vy)

20. end for

Figure 2. 5 – Generation of Edge-Dynamic Graph at time t+1

An example of how to change an edge-dynamic graph between two time step t and

t+1 is shown in Figure 2.6 (a) and Figure 2.6 (b) respectively. At two time steps, Gt and

Gt+1 have same 15 nodes. At time step t, Gt has 28 edges but at time step t+1, after

decreasing lifetimes of all edges by one, 3 edges have reached the end of their lifetimes.

Hence, edge(1, 10), edge(6, 12) and edge(8, 12) are removed from the graph. At the

addition part, 4 edges which are edge(7, 13), edge(8, 11), edge(7, 11), edge(3, 5) are added

11

according to ce. These graphs are also used to show the performances of our algorithm

and the algorithms from literature in the further sections.

Figure 2. 6 – State of edge-dynamic graphs at time steps at t and t+1

2.4. Population Initialization

Initial population Pop has a predefined number popSize of individuals as Pop= {S1,

S2, ..., SpopSize}. Each individual Si where i= 1, …, popSize, contains k color classes as

Si= {C1, C2, ..., Ck} and k is not fixed. Each node v in the input graph G1 is mapped to a

color class with respect to the rule that no two nodes in a same color class are connected

by an edge, i.e., for all u, v in Ci (i= 1,..., k), edge(u, v) not in E. Thus, the node v is named

as a conflict free node. If two nodes v and u which are connected by an edge edge(u, v)

in E, are assigned the same color class, these nodes are called conflicting nodes and their

color class is also a conflicting color class. In GCP, if a solution with k color classes has

no conflicting nodes, then this solution is said legal. In our study, all individuals in our

entire algorithm are legal.

To obtain the initial population with the features mentioned above, the algorithm in

Figure 2.7 is executed by using the input graph G1 and number of nodes n in G1. For each

individual Si, each node v in G1 is put into a different color class of Si respectively so

number of color classes of Si equals to number of nodes in G1 (k = n). However, k will be

no longer equal to n when grouping conflict free nodes in a same color by using crossover

12

and local search operations starts. After all nodes in G1 are placed to Si, the color classes

of Si are shuffled to get a different individual. This process continues until popSize

individuals are created.

Input: The initial graph G1 that is generated at time t=1, size of population PopSize, initial graph size n

Output: Initial population .Pop which is a list of PopSize number of parents

Initialization: Pop ← ⦰

1. for t ← 1 to PopSize do

2. Create a new parent Si: Si ← ⦰

3. for each node v exists on G1 do

4. Create a new color C and put v in C: C ← C U v

5. Put C in Si: Si ← Si U C

6. end for

7. Shuffle indexes of the colors in Si

8. Put Si in Pop: Pop ← Pop U Si

9. end for

Figure 2. 7 – Population Initialization

The aim of to generate an initial population with this method is to increase the

population (Pop) diversity and a fairness between DPBEA and the other algorithms DGA

and DSATUR with respect to their representaions of individuals.

2.5. Crossover Operation

A crossover operation is the most efficient part of a population-based evolutionary

algorithm. In general, a crossover operation uses two parents taken from its population

to produce an offspring though a method. This method differentiates a crossover

operation than other crossover operations in the literature.

2.5.1. Crossover Methods for Graph Coloring Problem

For graph coloring problem, there are many crossover methods that proposed in

the literature. Some crossover methods consider permutation-based individuals [26]

which are named as edge, order 1 (OX1), order 2 (OX2), position, partially mapped

(PMX), and cycle crossover. Most of these methods combines two parents to generate

one or two offsprings regardless of edges between the nodes in a given graph. After the

crossover operations, the nodes in the obtained offsprings are colored according to their

permutations with respect to edges between these nodes. For this reason, number of colors

used to color the individuals k is not fixed and all individuals have legal coloring.

13

Another crossover operations are based on partition method [16] which is more

efficient way to solve graph coloring problem. In general, these crossover methods

combine partitions (color classes) of two or more parents to generate one or more

offsprings. The most well-known partition approach is Greedy Partition Crossover (GPX)

[16]. GPX is applied to two parents (not necessarily legal colorings) which have a fixed

number k of color classes to generate an offspring in k steps. At each step i (1 ≤ i ≤ k),

GPX considers one of two parents respectively and chooses the color class which has the

maximum number of nodes of the considered parent. The subset of the chosen color is

transmitted to the next color class of the offspring. The most of crossover operations for

graph coloring problem are extended or improved versions of GPX such as Adaptive

Multi-Parent Crossover(AMPaX) [20], Diversification-guided Crossover (DGX) and

Grouping-guided Crossover (GGX) [23], Pool-Based Crossover (PBC) [5], MGPX [22],

Well-Informed Partition Crossover [36]. Since all these studies are suitable for static

graph coloring problem, they should be extended in case of solving dynamic graph

coloring problem.

2.5.2. Crossover Methods for Dynamic Graph Coloring Problem

Since a dynamic graph is a predefined number of static graphs, most of the

crossover methods in the literature can be used for dynamic graph coloring problem.

These crossover methods can be improved for dynamic graph coloring problem if their

concepts can adapt to dynamic graphs that change during a number of times by adding

and removing nodes or edges, easily. In this way, the permutation-based crossover

operator OX1 [26] is used to combine parents in [32] which is the first and recently

published genetic algorithm for dynamic graph coloring problem. Figure 2.8 shows how

to work OX1 operator on two parents in order to generate an offspring step by step.

 Generate two random crossover points on the two parents to obtain 3 substrings

in each parent.

 Transmit the middle substring in the 1st parent to the middle substring in the

offspring and assign the transmitted nodes as used (the red nodes) in each parent.

 Place the remaining (unused) nodes in 2nd parent to the offspring one by one.

Transmit each node starting from left to right according to the sequence of 2nd

14

parent in order to fill the 3rd and 1st substrings in the offspring respectively.

 Encode each node in the offspring with a color starting from left to right of the

sequence with respect to that conflicting two nodes according to the given graph

in Figure 2.4 (a) have different colors.

Figure 2. 8 – Example of OX1 [26]

15

2.5.3. Dynamic Pool-Based Crossover Operator

In this study, we proposed a novel crossover operator Dynamic Pool-Based

Crossover Operator(DPBC) which increase the diversity of search area while creating

color classes of the offspring. DPBC is an improved version of Pool-Based Crossover

Operator (PBC) which is a crossover operator that we proposed in [5] for static and node-

weigthed graph coloring problem. PBC operator combines a fixed number of color classes

of two parents based on degrees and weights of nodes in a given graph. However, the

graphs in this work are unweighted-node graphs and they are changed dynamically.

DPBC operator is explained in Figure 2.9. The algorithm takes the graph which is

generated time t Gt, two parents as S1 and S2, number of color classes of S1 k1 and number

of color classes of S2 k2. The algorithm obtains an offspring S0 with its number of color

classes k that can be different from numbers of color classes of its parents k1 and k2. The

algorithm starts with creating an empty pool Pool and marking all color classes of two

parents, C1
i in S1 (1 ≤ i ≤ k1) and C2

i in S2 (1 ≤ i ≤ k2), as unselected. Each node v in

these color classes is marked as a unassigned node vua. After that, each color class of S0

is generated step by step. At each step i (1 ≤ i ≤ k), ith color class of S0 is set as empty.

Two unselected color classes from S1 and S2 as C1
x and C2

y are selected randomly

and they are marked as selected color classes. Each unassigned node vua in C1
x U C2

y is

put into Ci and it is marked as an assigned node va. If there are nodes in Pool from

previous steps, all nodes in Pool are also put into Ci. After a node set is obtained in Ci,

the main characteristic procedure of DPBC is executed until Ci becomes a conflict-free

color class: the maximum conflicting node vmax is calculated according to Gt and vmax is

moved from Ci to Pool. When k steps is finished and the offspring with k nmber of color

classes is generated, there can be still one or more nodes in Pool because of the conflicts.

If Pool is not empty, the algorithm executes Figure 2.10 to search a suitable existing color

class or to create a new color class for each node in Pool. The algorithm in Figure 2.10

gets the graph Gt, number of color classes k, the offspring S0 and the pool Pool from the

algorithm in Figure 2.9 for this aim. For each node vp in Pool, a variable isPlaced is set

as false to control vp is placed an existing color class of S0 or not. Each color class Ci (1

≤ i ≤ k) of S0 is traced for vp. If there is no node conflicting with vp in Ci, vp is moved

from Pool to Ci, isPlaced becomes true and the algorithm continues to search the color

16

classes of S0 for the next node in Pool. If isPlaced is still false at the end of searching all

color classes in S0 for vp, a new color class is created in S0 and vp is put into the new color

class. In this case, number of color classes k is increased by one. After all nodes in Pool

are placed in S0, the algorithm in Figure 2.9 obtains S0 with an updated number of its

color classes k.

Input: Graph Gt , 1st parent S1 = {C1
1 C1

2, .., C1
k}, 2nd parent S2 = {C2

1 C2
2, .., C2

k}, number of color classes

of S1 k1, number of color classes of S2 k2

Output: An offspring S0 = {C1 C2, .., Ck}

1. Create an empty pool Pool ← ⦰

3. for i ← 1 to k1 do

4. Mark C1
i as unselected

5. for each node v in C1
i do

6. Mark v as unassigned node vua

7. end

8. end

9. for i ← 1 to k2 do

10. Mark C2
i as unselected

11. for each node v in C2
i do

12. Mark v as unassigned node vua

13. end

14. end

15. Set number of combinations k between the parents to create S0

16. k ← min(k1, k2)

17. for i ← 1 to k do

18. Set ith color class of S0 Ci: Ci ← ⦰
19. Select an unselected color class C1

x from S1

20. Select an unselected color class C2
y from S2

21. Mark C1
x and C2

y as selected

21. for each unassigned node vua in C1
x U C2

y do

22. Put vua into Ci: Ci ← Ci U vua

23. Mark vua as assigned node va

24. end

25. if Pool ≠⦰ then
26. Put each node in Pool vp into Ci: Ci ← Ci U vp

27. Remove vp from Pool: Pool ← Pool / vp

28. end

29. while Ci is not conflict free do

30. Calculate the maximum conflicting node as vmax using Gt

31. Throw vmax into Pool: Pool ← Pool U vmax

32. Remove vmax from Ci: Ci ← Ci / vmax

33. end

34. end

35. if Pool ≠ ⦰ then
36. k, S0 ← ClearPool(Gt, k, S0, Pool) /* Figure 2.10 */

37. end

Figure 2. 9 – Dynamic Pool-Based Crossover Operation

An application of DPBC is shown in Figure 2.11 by using the given graph at time

t in Figure 2.4 (a). The example is taken from the 2000th iteration step of the evolution

17

for the graph. In the first step of the example, the first color class of the first parent C1
1

and the third color class of the second parent C2
3 are selected randomly and their nodes

5, 2, 12, 6 and 10 are put into the first color class of the offspring C1. Conflicts between

the nodes in C1 are calculated according to graph in Figure 2.4 (a) and 5 is thrown to the

pool as the maximum conflicting node. C1 becomes a conflict free color class without 5

so the first step is finished with obtaining C1 and an unempty pool. The nodes in C1 and

the pool are removed from the parents in order not to use again.

Input: Graph Gt , number of color classes of k, an offspring S0 = {C1 C2, .., Ck}, the pool Pool

Output: An offspring S0 = {C1 C2, .., Ck}

1. for each node vp in Pool do

3. Set a variable isPlaced for the state of vp: isPlaced ← false

4. for each color Ci in S0, i ← 1, …, k

5. Set Ci as a conflict-free color for vp: CF ← true

6. for each node v in Ci do

7. if e (v, vp) then

8. CF ← false

9. break

10. end if

11. if CF then

12. Remove vp from Pool: Pool ← Pool / vp

13. Put vp into Ci: Ci ← Ci U vp

14. Change the state of vp as placed: isPlaced ← true

15. break

16. end if

17. end if

18. end if
19. if isPlaced ≠ true then

20. Set a new color class of S0 Ck+1: Ck+1 ← ⦰

21. Put vp into Ck+1: Ck+1 ← Ck+1 U vp

22. Increase k: k ← k + 1

23. end if

24. end for

Figure 2. 10 – Clear Pool

At the second step, the second color class of the offspring C2 is created. Since the

pool is not empty, 5 is put into C2. The second color class of the first parent C1
2 and the

first color class of the second parent are selected randomly. The nodes in these color

classes 4, 8, 13, 1, 0, 14, 7, 3 and 11 are combined with 5 in C2. Conflicts between the

nodes are calculated, 5 and 11 become the maximum conflicting nodes with 4 conflicts

in C2. One of them is selected randomly and 5 is moved to the pool. Conflicts with the

nodes are recalculated and 11 is the maximum conflicting node to thrown into the pool.

4 and 1 are put into the pool with the same procedure and the second step is completed

since C2 becomes a conflict free color class. After removing the nodes from the parents,

18

only 9 remains in the parents.

At the third step, 9 is combined with the nodes in the pool 5, 11, 4 and 1 to put

into the third color class of the offspring. Only 1 has conflicts with 5 and 11 so 1 is thrown

into the pool. The algorithm can not continue with the fourth step because all nodes in the

parents are used. Since the pool is still not empty with 1, the algorithm executes to clear

the pool (Figure 2.10). 1 has conflicts with 2, 6 in C1, 3 in C2 and 5, 11 in C3 so a new

color is created for 1. At the end of DPBC, we obtain an offspring with 4 colors. The

offspring is better than its two parents whereas all of them have same number of color

classes. The reason is explained in section 2.7. In Figure 2.12 shows the results of

DPBEA, DGA [25] and DSATUR [3] according to the graph in Figure 2.4 (a). All

algorithms have the same number of colors 4 but DPBEA gives the best result with respect

to the computation of fitness in Section 2.7.

When the time is increased as t+1, the dynamic graph Gt in Figure 2.4 (a) changes

into the graph Gt+1 in Figure 2.4 (b). Node 1 reached its life time so it is removed from

Gt+1. On the other side, node 15 is added to Gt+1 with respect to the node change rate cv

and its edges are added randomly by using edge probability p. After 2000 iteration steps,

the best results of DGA and DPBEA are obtained for the dynamic graph Gt+1 in Figure

2.4(b) and they are shown in Figure 2.13 with the result of DSATUR.

19

Figure 2. 11 – Example of pool based crossover operation according to node-dynamic

graph Gt in Figure 2.4 (a)

20

Figure 2. 12 – Results from Gt in Figure 2.4 (b)

 Figure 2. 13 – Results from Gt+1 in Figure 2.4 (b)

Figure 2. 13 – Results from Gt in Figure 2.4 (a)

21

2.6. Local Search

After an offspring is generated with a crossover operation, a local search method is

applied to the offspring. While a crossover operation recombines two parents to create a

new solution with increasing the population diversity, a local search method improves the

quality of the new solution. For this improvement, there are many local search methods

that have been purposed in the literature.

2.6.1. Related Works About Local Search Methods for Graph

Coloring Problem

Local search methods in graph coloring problem, are based on finding

neighborhood solutions of a given offspring by moving nodes between color classes of

the offspring. Using this idea, the first local search method for graph coloring problem is

proposed in [17]. The paper uses an offspring which has a fixed number of color classes

k in a not legal k-coloring and its aim to minimize number of conflicting nodes (i.e. two

nodes connected by an edge are in the same color.) in the color classes. Local search

method in the paper, selects a node randomly and moves the node to an another color

class in the offspring. The new offspring can be better or worse than the current offspring.

The algorithm decides if the new offspring is replaced with the current offspring by using

Simulated Annealing (SA) metaheuristic [37].

After SA is improved for graph coloring problem, one of the most powerful local

search methods for the problem, which is TABUCOL, is purposed in [14]. The algorithm

uses tabu search technique [38] to improve a given offspring iteratively. Objective of

TABUCOL is same with the objective in [17]. The method is applied to a given offspring

which is not a legal k-coloring, for some number of iterations. At each iteration, tabu

search generates a neighborhood solution of the offspring by moving a node u from its

color class i to an another color class j of the offspring. In order to avoid cycling, the

move (u, i, j) becomes "tabu" or "forbidden" which means that u can not be moved back

to color class i for the next iterations. Thus, the move is added to a tabu list which is

initialized before starting to improve the offspring. At the end of each iteration, the

generated solution is compared with the offspring. If the solution is better than the

offspring, it becomes the offspring. If it is not, the algorithm continues with the next

iteration. Stop critearia of the algorithm can be determined as reaching a predefined

22

number of iterations or as finding the local optimum of the offspring (See more details in

[15]). TABUCOL has been improved by many studies as FOO-PARTIALCOL [18],

AMACOL [19], MACOL [20], ATS [21], DNTS [22] and IDTS [23] so far.

2.6.2. Related Works About Local Search Methods for Dynamic

Graph Coloring Problem

In dynamic graph coloring problem (DCGP for short), all solutions for a given

dynamic graph at each time step, should be legal colorings with nonfixed number k of

color classes [31]. Therefore, local search methods in [32], which is the first study applied

genetic algorithms to DGCP in the literature, use an offspring that offers a legal coloring

with nonfixed number of color classes. Since the offspring has already a conflict-free

solution (legal coloring) at the end of the crossover operation, objective of local search

methods in [32] is to minimize number of color classes used for the offspring. The paper

uses three local search methods as RAR, SWAP and inversion that are described in [34]

and adapts the methods to DGCP. SWAP becomes the used local search method in the

paper thanks to its outperformances on the experimental dynamic graphs.

Figure 2. 14 – Example of SWAP Operation

SWAP is applied to an order-based offspring and it changes order positions of any

two nodes in the offspring. The Figure 2.14 shows two offsprings as before and after

SWAP operation respectively.

The second local search method that is purposed in our previous study [39] for

DGCP, also tries to improve an offspring with the same objective in [32]. The method is

applied to an offspring which is generated with DPBC operator. Since DPBC obtains a

well-improved offspring by recombining two parents at the most of time besides

increasing the population diversity, the local search method may effect poorly about

minimizing number of the color classes used. However, the method may help to decrease

23

number of nodes in any color class of the offspring and it may effect the fitness value

(Section 2.7) of the offspring. The algorithm of the local search method in Figure 2.15 is

built the offspring as follows. The maximum conflicting node vmax in the given dynamic

graph Gt, is selected. vmax is removed from its color class and it is placed in the another

color class C which is chosen randomly. The conflicts between the nodes in C and vmax is

calculated according to Gt. If there are conflicts, the conflicting nodes with vmax are

thrown to an empty pool Pool. The nodes in Pool are placed in the offspring by using

ClearPool algorithm (Figure 2.10) which is explain in detail at Section 2.5.3. As it can

be seen, the algorithm disarranges the offspring and tries to improve it again using

ClearPool procedure. If the algorithm considers a dense dynamic graph, it may become

a weak operator in order to rearrange the offspring and it may obtain a worse offspring

than the offspring at the end of DPBC operator.

Input: Graph Gt , number of color classes of k, an offspring S0 = {C1 C2, .., Ck}

Output: An offspring S0 = {C1 C2, .., Ck}

Initialization: An empty pool Pool ← ⦰

1. Select the maximum conflicting node vmax in Gt

2. Find the color class of vmax Cmax in S0

3. Remove vmax from Cmax: Cmax ← Cmax / vmax

4. Select a color class C of S0 randomly, C ≠ Cmax

5. Add vmax to C: C ← C U vmax

6. for each node v in C do

7. if edge (v, vmax) then

8. Remove v from C: C ← C / v

9. Throw v into Pool: Pool ← Pool U v

10. end if

11. end for

12. k, S0 ← ClearPool (Gt, k, S0, Pool) /* Figure 2.10 */

Figure 2. 15 – Local Search Operation in [39]

2.6.3. Local Search Operator

In this study, a new local search method is proposed to solve the explained problems

about the local search method in our previous study [38] at Section 2.6.2. The method in

Figure 2.16 uses an offspring that is generated with DPBC operator and a dynamic graph

at time step t Gt. The algorithm tries to improve the offspring as follows.

Firstly, the color class which has the minimum number of nodes in the offspring

Cmin, is selected. The nodes in Cmin are moved to an empty pool Pool and Cmin is removed

from the offspring. Finally, each node in Pool is assigned to the offspring by using

24

ClearPool (Figure 2.10) which is explained at Section 2.5.3. The final step of the

algorithm is the same with the final step of the local search in [38]. However, this local

search explores new color classes for the nodes in Cmin without changing the positions of

the other nodes in the remaining color classes. It provides to obtain a better solution than

the offspring that is taken as input or the same offspring at least.

Input: Graph Gt , number of color classes of k, an offspring S0 = {C1 C2, .., Ck}

Output: An offspring S0 = {C1 C2, .., Ck}

Initialization: An empty pool Pool ← ⦰

1. Select the color class having the minimum number of nodes Cmin in S0

2. Throw the set of nodes in Cmin Vmin into Pool: Pool ← Pool U Vmin

3. Remove Cmin from S0: S0 ← S0 / Cmin

4. k, S0 ← ClearPool (Gt, k, S0, Pool) /* Figure 2.10 */

Figure 2. 16 – Local Search Operation

In order to show effectiveness of the local search method in an example, Figure

2.17 and Figure 2.18 illustrate 2000th iteration of DPBEA for the graph Gt+1 in Figure 2.6

(b). At this iteration, two parents as S1 and S2 are selected from the population randomly

and the algorithm starts to combine color classes of the two parents to create color classes

of the offspring as S0. At the first combination of the parents, the third color class of S1

C3
1 and the third color class of S2 C

3
2 are selected randomly. The nodes in these color

classes 8, 3, 10, 14, 7 and 5 are put into the first color class of S0 C1. The conflicts between

the nodes are calculated according Gt+1 in Figure 2.6 (b) and 10, 8 and 3 are thrown to the

pool. Since the first color class of S0 becomes conflict-free, the first combination is

completed. At the end of each combination, the nodes are placed in S0 or thrown to the

pool, are removed from the parents temporarily so 8, 3, 10, 14, 7 and 5 are removed from

the parents.

At the second combination, the first color class of S1 C
1
1 and the second color

class of S2 C
2

2 are selected randomly. The nodes in these color classes 6, 11, 9 and 13 are

put into the second color class of S0 C2. Since the pool is not empty, the nodes 8, 3 and

10 in the pool are also punt into the second color class of S0 C2. Conflict between the

nodes are calculated according to the considered graph in Figure 2.6 (b) and 8 is thrown

to the pool as the maximum conflicting node of C2. Conflicts between the nodes are

calculated without 8 and C2 becomes a conflict-free color class so the second combination

is completed. After 6, 11, 9, 13 are removed from the parents, the forth color class of S1

25

C4
1 and the first color class of S2 C

1
2 are selected randomly. The nodes in C4

1 and C1
2 15,

1 and 2 are combined with the node 8 in pool. They are put into the third color class of S0

C3. Conflicts between the nodes are calculated according to the graph and C3 is already

conflict-free so the third color class of S0 is created. At the forth combination, the

remaining color classes from the parents C2
1 and C4

2 are selected and the nodes in these

color classes 4, 12, 15 are put into the forth color class of the offspring. The group of

these nodes is conflict free so the fourth color class of the offspring is created. Since all

nodes in the parents are placed in S0 or the pool, the combinations are finished.

After the crossover operation, the local search method is applied to the offspring

S0 and illustrated in Figure 2.18. Firstly, the color class which have the minimum number

of nodes in S0 Cmin, is selected. The first, third and forth color classes have the minimum

number of nodes so one of them is selected randomly. The third color class of S0 which

has 3 nodes, is selected as Cmin, 1, 2 and 8 in Cmin are thrown to the pool and Cmin is

removed from S0. For each node in the pool, the remaining color classes are searched if

there is a conflict-free color or not. If there is no color class due to conflicts, a new color

class is created in S0 for the node (Figure 2.10). Therefore, 2 is put into the first color

class of S0 and, 1 and 8 are placed in the third color class of S0 since there is no conflicts

between the nodes in the color classes according to the graph.

At the end of the local search operation, the new offspring with 3 color classes is

obtained. The best solutions of DPBEA, DGA and DSATUR according to Gt+1 are shown

in Figure 2.19 respectively. DPBEA has better solution than DGA whereas their results

are obtained after 2000 iterations. DGA and DSATUR have the same number of color

classes but DGA has better result than DSATUR based on their fitness values (Section

2.7).

The edge-dynamic graph Gt+1 in Figure 2.6 (b) that is used in the example, is the

snapshot of an edge-dynamic at 13th time step of GraphChangeStep (See Main Scheme

of DPBEA in Figure 2.1). Since the population is easily adapted to the changes of edges

in the given graph at each time step with DPBEA, a solution with 3 color class is obtained

as the best solution for Gt+1. When DPBEA creates its initial population with Gt+1 as a

static graph and evaluated the population with more than 2000 iterations, the best solution

cannot reach 3 color classes. This situation shows our algorithm obtains better results

26

with dynamic graphs than static graphs thanks to its adaptation to changes.

Figure 2. 17 – Example of Pool Based Crossover Operation According to Edge

Dynamic Graph Gt+1 in Figure 2.6 (b)

27

Figure 2. 18 – Example of Local Search Operation According to Edge Dynamic

Graph Gt+1 in Figure 2.6 (b)

Figure 2. 19– Results from Gt +1 in Figure 2.6 (b)

2.7. Fitness Calculation

In the most of studies for graph coloring problem in the literature, fitness function

f computes a given k-coloring individual S to determine whether it is a conflict-free

solution with the lower bound k (fixed or not) number of colors for the given graph or

not. If f(S) returns 0, it means that no two vertices are connected by an edge have the same

color in the individual S so S is conflict-free and the individual reaches its legal coloring

with k. If the individual S has an illegal coloring (f(S) > 0), f(S) shows how far its coloring

28

to reach the legal coloring of the graph. If k is not fixed in a given study, k is increased

by one and S is generated with k+1. This process continues until f(S)=0 is reached. If k

is fixed in a given study, then the individual which has the minimum fitness value

becomes the best solution for the graph. The performances of two conflicting individuals

can be compared by using their fitness values. For instance, if two k-coloring individuals

as S1 and S2 have illegal colorings for the graph and f(S1) is less than f(S2), then S1 is

denoted as a better individual than S2. This comparison has k-penalty approach [24] and

it is used by many proposed works for graph coloring problem such as [5, 6, 20, 40, 41].

When the population is initialized at time step 1 (Figure 2.7), the individuals are

created by using an upper bound k colors to color a given graph. At each iteration step,

the algorithm tries to color the graph legally with lower number of colors than the

previous number of colors used. Since the study aims to minimize k colors used from its

upper bound value, a fitness function with k-penalty approach is not needed.

In this study, we used the fitness function that is described in [25]. When the

fitness function f compares two individuals, it has two criteria to decide which one is

better. The first criteria is the number of colors used in the individuals and it has the

highest impact at the fitness function. The second criteria is how many nodes in the three

least frequently used color classes of the individual. The individual which has less number

of nodes in these color classes, may adopt to changes in the graph at the next time step

easily and have more chance to minimize its number of color classes used. Consequently,

the fitness function fi for each individual Si is calculated by Equation 1 [25].

𝐹𝑖 = 𝑛3 × 𝑐𝑖 + 𝑛2 × 𝑐𝑖,1 + 𝑛 × 𝑐𝑖,2 × 𝑐𝑖,3

Equation 2. 1 – Computation of fitness function

In this equation, n denotes the number of nodes currently available in the dynamic

graph, ci is the number of colors used, ci,1, ci,2 and ci,3 are the number of nodes in the least,

second least and the third least frequently used color class. As we are trying to minimize

the number of colors used, our algorithm tries to minimize the fitness function. The fitness

values calculated for the solutions given in Figure 2.11 are 13789, 14000, 13790 for

DPBEA, DGA and DSATUR respectively. Even if all three algorithms use 4 colors,

DPBEA and DSATUR have 1 node in the least used color class, so their fitness values

29

are close to each other whereas DGA has 2 nodes in the least used color and has the worst

fitness value.

2.8. Placement of The Offspring In the Population

When an offspring is obtained at the end of an iteration step, the offspring is

always replaced with the parent having the worst fitness value. The replacement process

is detailed in Figure 2.20.

Input: 1st parent S1, 2nd parent S2, the offspring S0

Output: Update population Pop

1. Calculate the fitness values of S0, S1 and S2 according to the function in Section 2.7

2. if fitness(S0) > fitness(S1) then

3. Replace S0 with S1: Pop ← Pop U S0 / S1

4. else

5. Replace S0 with S2: Pop ← Pop U S0 / S2

6. end if

Figure 2. 20 – Placement of Offspring

2.9. Update of Individuals with Changes of Graph

After an initial graph G1 (V, E) is created at time step t=1, some nodes and/or edges

are changed with insertion and deletion operation in the graph Gt in the next time steps t,

(t>1). As an initial population is generated with G1 (V, E), this population should also be

adapted to these changes at each time step before starting the evolution. In node-dynamic

graphs, once a node is added to Gt (V, E) with its edges, all individuals in the population

consist the node in one of their color classes with legal coloring. In the deletion case of a

node from Gt (V, E), the node, and its color class if it becomes empty, is removed from

all individuals in the population. In edge-dynamic graphs, once an edge is added between

the nodes u and v in Gt (V, E), the individuals which have u and v in the same color, are

detected to move one of the nodes to an empty color. If an edge is deleted from Gt (V, E),

an update operation for the individuals is not needed.

Figure 2. 21 – The best solution of DPBEA for Gt in Figure 2.6 (a)

30

Figure 2. 22 – Adapting DPBEA individual in Figure 2.21 according to the changes

between Gt and Gt +1 in Figure 2.6

In Figure 2.22 shows how an individual is updated according to changes of an

edge-dynamic graph. The example uses the best individual of DPBEA in Figure 2.21 for

graph Gt in Figure 2.6 (a) and updates the individual according to Gt+1 in Figure 2.6 (b).

When the edges edge(7, 13), edge(8, 11), edge(7, 11) and edge(3, 5) are added to the

graph Gt+1 in Figure 2.2 (b), the newly connected nodes {7, 13}, {8, 11} and {3, 5} are

detected in a same color of the DPBEA individual in Figure 2.21. Therefore, 3, 7, and 11

are selected randomly from their conflicting pairs to move in a new color of the

individual. After this update, the individual in Figure 2.21 becomes the individual in

Figure 2.22.

Figure 2. 23 – Adapting DPBEA individual in Figure 2.21 according to the changes

between Gt and Gt +1 in Figure 2.4

In Figure 2.23 shows how an individual is updated according to changes of a node-

dynamic graph. The example uses the best individual of DPBEA in Figure 2.12 for graph

Gt in Figure 2.4 (a) and updates the individual according to Gt+1 in Figure 2.4 (b). Once

the node 1 is removed from the graph Gt+1, the node is also removed from the individual

with its color since it becomes empty. At the same time, node 15 is added to the graph

Gt+1 so the node is added to the individual with a new color.

31

3. EXPERIMENTAL STUDY

In this section, our algorithm DPBEA is tested on two types of dynamic graphs that

are generated by using various input parameters. The experimental results of DGA [32]

and DSATUR [13] algorithms on the same dynamic graphs are also obtained with

DPBEA simultaneously. For each experimental test, any type of dynamic graphs is built

with these parameters:

 Graph Change Step: After the input graph G1 is created, graph change step decides

that how many time steps the graph is changed. In other words, since a dynamic

graph is a set of static graphs, graph change step determines the number of these

static graphs in the set. In this study, a generated dynamic graph is changed 50

times so 50 static graphs are generated for the dynamic graph.

 Initial Number of Nodes: Initial number of nodes in the graph is denoted by n.

When the input graph G1 of a dynamic graph is initialized, n number of nodes are

used. In this experimental study, 5 different initial numbers of nodes are used to

initialize input graphs. These are 100, 200, 300, 400 and 500. The default value is

100.

 Node probability: Node probability is denoted by cv that is set between 0.01 and

1. The parameter is used in n x cv to determine number of nodes which is added to

the dynamic graph at each time step t. In the tests for this study, cv is set as 0.01,

0.02, …, 0.1, 0.2, 0.3, 0.4, 0.5. The default value of cv is 0.1 in this experimental

study. cv is not used for the tests of edge-dynamic graphs.

 Edge Probability: Edge probability is denoted by ce that has the same usage with

cv for the edges that are added to a dynamic graph at each time step t. The

parameter is set with the same values of cv and its default values is also 0.1. ce is

not used for the tests of node-dynamic graphs.

 Edge Density: Edge density value is denoted by p which is used to decide the total

number of edges should exist on the dynamic graph at each time step t. The

parameter is set between 0.1 and 0.9. The default values are 0.7 and 0.5 for node-

dynamic graphs and edge-dynamic graphs respectively.

 Minimum Lifetime: The minimum amount of iterations that a node or an edge is

32

kept alive in the graph is the minimum lifetime of a node or an edge and it is

denoted by tmin.

 Maximum Lifetime: The maximum amount of iterations that a node or an edge is

kept alive in the graph is the maximum lifetime of a node or an edge and it is

denoted by tmax.

The default values for the parameters of the evolutionary algorithm are mutation

rate=0.3, population size=100 and generation size= 10000. In order to balance the number

of nodes or edges that are added and removed at each time step, the values for tmin and

tmax are set to 3 and 13 respectively. These values are used in the experiments unless stated

otherwise. Usages of whole parameters in the experimental study are detailed Section 2.1.

The experimental tests in this study, are specialized according to the types of the tested

dynamic graphs as node-dynamic and edge-dynamic. Therefore, these tests and values of

their parameters are analyzed in two different sections.

3.1. Node-Dynamic Graphs

Experimental studies of node-dynamic graphs are built as follows. The initial graph

is created with n nodes and in each time step t, n x cv nodes are added. When a node is

created, a number between tmin and tmax is randomly generated to set its lifetime, then all

the nodes in the graph are traversed and an edge between the newly added node and the

current considered node is created with probability p. In each time step, the graph is

changed and is given as input to all three algorithms. In the first iteration step DSATUR

algorithm produces its result, and in DGA and DPBEA, each individual in their

populations are updated. Therefore, the newly produced nodes are added to and the dead

nodes are removed from each individual in the populations of DGA and DPBEA. In

DPBEA, the dead nodes are deleted from their color classes and for each newly produced

node, a new color class is created and this node is the only node that is placed to this color

class. Both DGA and DPBEA algorithms will iterate for 10000 iteration steps (denoted

as e), where 10000 individuals are generated. The best individuals from the populations

of DGA and DPBEA are recorded at the end of the graph change step. To compare the

performance of the algorithms, this process continues for 50 graph change steps to

generate 50 graphs (from G1 to G50) working on one single dynamic graph and a total of

33

5 dynamic graphs are generated. The results are the mean of the number of colors and

fitness values calculated by each algorithm for 250 different graph states.

Figure 3. 1 – Varying evolution steps (e) for node-dynamic graphs

The first experimental test is shown in Figure 3.1 is about generation size. The

test aims to find the best number of evolution size for DGA and DPBEA. The parameters

are set as their default values that are explained at Section 3. Edge probability ce is not

initialized since added edges are determined with p for node-dynamic graphs. The best

solutions of DGA and DPBEA at every 1000th evolution step are stated starting from

1000th evolution step to 10000th evolution step. According to these values, the best

solution of DGA remains stable after 8000th evolution step and DPBEA reaches its best

solution at 8000th evolution step and it remains stable until 9000th step. Therefore, the

default value of generation size for node-dynamic graph is set as 8000 for the other

experimental tests.

34

Figure 3.2 shows how the three algorithms DSATUR, DGA and DPBEA react

with different node probability value cv when the other test parameters are set as their

default values. When cv is set as 0.01 that means only one node is added to the tested

dynamic graph at each time step, the three algorithms obtain the same best solutions

approximately. When cv is set between 0.03 and 0.05, DGA and DPBEA get their best

solutions with close values which are better than the best solution of DSATUR. However,

DPBEA outperforms DGA and DSATUR with cv value which is bigger than 0.05 and

DGA obtains better results than DSATUR at the same time. The test can be interpreted

in a way that DPBEA has the best adaptation in the algorithms while number of added

nodes at each time step t is increasing.

Figure 3. 2 – Varying cv values

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

0,01 0,03 0,05 0,07 0,09 0,11 0,13 0,15 0,17 0,19 0,21 0,23 0,25 0,27 0,29

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Node Probability

DPBEA

DGA

DSATUR

35

Figure 3. 3 – Varying p values for node-dynamic graphs

Figure 3.3 reports the best solutions of DSATUR , DGA and DPBEA on the

dynamic graphs with different total number of edges. In this test, edge density p is

changing when the other parameters are set as their default values. For each edge density,

the three algorithms are run on 5 generated dynamic graphs. These graphs have a number

of edges according to the considered p during their time steps. The best solutions of each

algorithm for 5 dynamic graphs for the considered p are averaged and the average value

of the p is shown at its axis in Figure 3.3. Starting from 0.1 p value, DPBEA outperforms

DSATUR and DGA until 0.95 p value and DGA obtains better results than DSATUR

between these values. The gap between the best solutions of DGA and DPBEA grows

while p value is increasing from 0.1 to 0.7 and it shows that DPBEA improves itself more

successfully than the other algorithms eventhough the dynamic graphs are getting more

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Density

DPBEA

DGA

DSATUR

36

intense. When p value is more than 0.9, DGA and DPBEA converge the best solution of

DSATUR because the dynamic graphs are getting closer to become fully-connected

graphs.

Figure 3. 4 – Varying node values

In Figure 3.4, only the test parameter p is used as its default value. We focus the

dynamic graphs that are growing with adding 50 nodes at each time step in this test. The

graphs are initialized with 50 nodes and at each time step, 50 nodes are added to the

graphs regularly without removing any nodes. Therefore, the nodes have not lifetimes. At

10th time step, number of nodes in the graphs reaches 500 which is the maximum node

size in the experimental study. When the total number of nodes in the dynamic graphs are

400, DGA obtains worse results than DSATUR. However, DPBEA outperforms DGA

37

and DSATUR at each node size in the graphs. The test shows that DGA can not adapt in

the dynamic graphs with large number of nodes because of its order-based representation.

NUMBER OF COLORS
USED

COMPUTATION TIME

DSATUR DGA DPBEA DSATUR DGA DPBEA
EDGE
SIZE

EDGE
DENSITY

42 42 41 0,03 4,76 4,73 2942 0,59

41 41 40 0,03 4,89 4,66 2876 0,58

39 39 38 0,03 4,62 4,15 2938 0,59

38 38 35 0,03 4,99 4,19 2873 0,58

34 34 31 0,03 4,67 3,68 2851 0,58

31 31 27 0,02 4,32 3,59 2830 0,57

29 29 24,6 0,02 4,27 3,65 2805 0,57

29 29 24 0,03 4,58 3,68 2755 0,56

26 26 22,4 0,02 4,44 4,01 2666 0,54

23 23 20 0,02 4,27 4,12 2641 0,53

20 20 19 0,02 4,01 4,59 2615 0,53

19,8 19,2 18,4 0,02 4,02 4,69 2675 0,54

19,8 20 18,4 0,02 4,24 4,86 2649 0,54

19 18,2 17 0,02 3,87 5,18 2701 0,55

19,4 18,8 17,6 0,02 4,17 5,6 2663 0,54

19,2 18,4 17,2 0,02 4,2 5,19 2696 0,54

18,2 18,4 17 0,02 4,17 5,79 2770 0,56

19,4 18,4 17 0,02 4,24 5,86 2745 0,55

19 18 17 0,02 4,3 5,91 2710 0,55

18,4 18 16,2 0,02 4,23 5,97 2708 0,55

18,6 18 16,2 0,02 4,14 5,55 2709 0,55

17,4 18 16 0,02 4,27 5,91 2766 0,56

18,2 18 16,4 0,02 4,37 6,07 2729 0,55

19 17,2 16 0,02 4,31 5,84 2706 0,55

18,2 18,4 16,2 0,02 4,22 5,81 2660 0,54

19,8 17,6 16 0,02 3,98 5,74 2665 0,54

18,6 17,8 15,8 0,02 4,11 5,69 2647 0,53

18,4 17,4 16 0,02 4,07 5,63 2634 0,53

18,4 17,8 16 0,02 4,08 5,67 2652 0,54

18,8 18,2 16,2 0,02 4,12 5,7 2622 0,53

18,4 17,8 16 0,02 4,04 5,61 2620 0,53

18,6 18 16 0,02 4,09 5,62 2667 0,54

18,8 18,2 16 0,02 4,24 5,78 2677 0,54

Figure 3. 5 – Results of the algorithms from the node-dynamic graph with n=100 at

each time step t

38

Besides increasing number of nodes in a node dynamic graph at each time step t as

in Figure 3.4, we tested keeping number of nodes in the graphs constant at each time step

t. In Figure 3.5, node-dynamic graphs are initialized with default values of their test

parameters but tmin and tmax are not used. At each time step t, 𝑛 × 𝑐𝑣 existing nodes are

selected randomly and they are removed from the graphs with their edges and 𝑛 × 𝑐𝑣 new

nodes are added to the graphs with their edges at the same time step. Since numbers of

added and removed nodes are the same, the dynamic graphs have approximately same

number of edges at each time step and their density value vary between 0.53 and 0.59 in

these steps. At the first time step, each algorithm gives its worst results for the tested

dynamic graphs. While the time step is increasing, the algorithms adapt the changes on

the graphs and they improve their solutions. However, DPBEA outperforms DGA and

DSATUR in all time steps and its adaptation is more powerful than the other algorithms.

When computation times of the algorithms are concerned, DSATUR is very successful

to use its time efficiently because it obtains only one solution for each graph at each time

step. DGA and DPBEA have approximate values about computation time but DGA has

better than DPBEA at each time step.

3.2. Edge-Dynamic Graphs

Edge-dynamic graphs are tested as follows. The initial graph is created with n nodes

and these nodes are not removed from the graph and new nodes are not added to the graph

at any time step. However, in each time step t, n x (n-1) x p x ce ÷ 2 edges are added. When

an edge is created, two conflict-free nodes in the graph are selected randomly as two

endpoints of the edge and a number between tmin and tmax is randomly generated to set a

lifetime of the edge. In each time step, the graph is changed and is given as input to all

three algorithms. In the first iteration step, DSATUR algorithm produces its result, and in

DPBEA, each individual in their populations are updated since it has partition represented

individuals. Therefore, each individual in the population of DPBEA is checked for the

newly produced edges whether any conflicts occur because of their endpoints are in the

same color. If a conflict occurs in the individual, one of the conflicting nodes is removed

from its color class and a new color class is created in the individual to place only this

node. Both DGA and DPBEA algorithms will iterate for 10000 iteration steps (denoted

as e), where 10000 individuals are generated. The best individuals from DGA and

39

DPBEA are recorded at the end of the graph change step. To compare the performance

of the algorithms, this process continues for 50 graph change steps to generate 50 graphs

(from G1 to G50) working on one single dynamic graph and a total of 5 dynamic graphs

are generated. The results are the mean of the number of colors and fitness values

calculated by each algorithm for 250 different graph states.

Firstly, a test is built to examine how the best solutions of DGA and DPBEA are

changed with respect to number of evolution steps when the other test parameters are set

as their default values except for n. The generation size test is executed for 100, 200, 300

and 400 nodes respectively and DPBEA outperforms DGA and DSATUR at the end of

10000 evolution steps in four these tests. In Figure 3.6, DGA obtains better results than

DSATUR starting from 2000th evolution step and it improves itself until the end of

10000th evolution step as DPBEA. In Figure 3.7, DPBEA and DSATUR get the same

result at 1000th evolution step whereas DGA has the worst result. After 1000th evolution

step, DGA has still the worst result between the algorithms until 7000th evolution step but

it is getting closer the best solution of DSATUR step by step. Meanwhile, the gap between

DPBEA and DSATUR is growing and DPBEA improves itself. After 8000th evolution

step, DGA outperforms DSATUR but it has still worse result than DPBEA. In Figure 3.8

and 3.9, DGA has the worst result between the algorithms during the evolution steps and,

DPBEA needs more than 5000 steps in Figure 3.8 and 9000 steps in Figure 3.9 to

ourperform DSATUR. These tests show that DGA is an unsuccessful approach on the

dynamic graphs with large instances. However, DPBEA promises to get a good solution

with default values of the test parameters eventhough the dynamic graphs become

challenging.

In Figure 3.10 and 3.11, edge probability ce is tested on the three algorithms for 200

and 300 nodes respectively and the other test parameters are set as their default values. In

case of using 200 nodes (Figure 3.10), DGA obtains better results than DSATUR at 0.01,

0.03, 0.04, 0.06, 0.1 (also shown in Figure 3.7) and 0.2; the same results with DSATUR

at 0.02, 0.05 and 0.07; worse results than DSATUR at the remaining ce values. However,

DPBEA outperforms DGA and DSATUR at all ce values despite of the fluctuation in its

results. In case of using 300 nodes (Figure 3.11), DGA has the worst results at all ce values

meanwhile DPBEA has the best results.

40

In Figure 3.12, the algorithms are run on the dynamic graphs with 500 nodes. The

test shows that while the gap between DGA and DSATUR is growing much more than

Figure 3.11, DPBEA is getting closer to DSATUR but it still has the best solutions at

0.01, 0.02, 0.04, 0.05, 0.06, 0.07, 0.1, 0.2 and 0.3. DPBEA has worse result than

DSATUR at only 0.5 ce value.

Figure 3. 6 – Varying evolution steps (e) for edge-dynamic graphs when n=100

Figure 3. 7 – Varying evolution steps (e) for edge-dynamic graphs when n=200

94

95

96

97

98

99

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs

U
se

d

Generation Size

DPBEA

DGA

DSATUR

98

99

100

101

102

103

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs

U
se

d

Generation Size

DPBEA

DGA

DSATUR

41

Figure 3. 8 – Varying evolution steps (e) for edge-dynamic graphs when n=300

Figure 3. 9 – Varying evolution steps (e) for edge-dynamic graphs when n=400

99,3

100,3

101,3

102,3

103,3

104,3

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Generation Size

DPBEA

DGA

DSATUR

99,5

100,5

101,5

102,5

103,5

104,5

105,5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Generation Size

DPBEA

DGA

DSATUR

42

In Figure 3.13, the algorithms are tested on the dynamic graphs with various edge density

values p with the other test parameters as their default values. For instance, when p value

is 0.5, it means that 100 x (100 – 1) x 0.5 ÷ 2 edges exist on the dynamic graph at each

time step t. In each next time step t+1, using default ce value, 100 x (100 – 1) x 0.5 x 0.1

÷ 2 edges are removed from the dynamic graph and the same number of new edges are

added at the same time in order to keep the tested density value for the graphs. We conduct

how the three algorithms adapt to these changes with protecting the density. DPBEA

outperfoms DGA and DSATUR at all p values and DGA has also better results than

DSATUR except for 0.1 p value.

Figure 3. 10 – Varying ce values when n=200

 Figure 3.14, 3.15 and 3.16 have the same purpose and procedure with the test in

Figure 3.13 for different number of nodes. Common observations in these three tests, are

that DSATUR outperforms DGA and DPBEA between 0.1 and 0.4 edge density values.

These trends show that DPBEA has worse adaptation than DSATUR when edge-dynamic

graphs have large size of nodes and small size of edges. DGA has better solutions than

DSATUR only between 0.5 and 0.9 density values in Figure 3.14 and it has worse results

than DSATUR at all density values of Figure 3.15 and 3.16.

97,5

98

98,5

99

99,5

100

100,5

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,2 0,3 0,4 0,5

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Probability

DPBEA

DGA

DSATUR

43

Figure 3. 11 – Varying ce values when n=300

Figure 3. 12 – Varying ce values when n=500

99,2

99,7

100,2

100,7

101,2

101,7

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,2 0,3 0,4 0,5

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Probability

DPBEA

DGA

DSATUR

99,6

100,1

100,6

101,1

101,6

102,1

102,6

103,1

103,6

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,2 0,3 0,4 0,5

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Probability

DPBEA

DGA

DSATUR

44

Figure 3. 13 – Varying p values for edge-dynamic graphs when n=100

Figure 3. 14 – Varying p values for edge-dynamic graphs when n=200

89

91

93

95

97

99

101

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Density

DPBEA

DGA

DSATUR

90

92

94

96

98

100

102

104

106

108

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Density

DPBEA

DGA

DSATUR

45

Figure 3. 15 – Varying p values for edge-dynamic graphs when n=400

Figure 3. 16 – Varying p values for edge-dynamic graphs when n=500

96

98

100

102

104

106

108

110

112

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Density

DPBEA

DGA

DSATUR

96

98

100

102

104

106

108

110

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P
e

rc
an

ta
ge

 o
f

M
e

an
 D

SA
TU

R
 C

o
lo

rs
 U

se
d

Edge Density

DPBEA

DGA

DSATUR

46

In Figure 3.17, a special case for edge-dynamic graphs is tested without regarding

default values of the test parameters. The results of the algorithm are shown in details

according to the changes of the edge-dynamic graph step by step. The initial graph is

created with 100 nodes and there is no edge between any two of them so edge size is 0 at

the first time step. Starting from the second time step until the 13th time step, edges are

added randomly without removing any edges. At the 13th time step, the graph becomes

fully-connected. After the 13th time step, some edges are removed randomly while new

edges are added. When new edges are added without removing between 2nd and 13th time

steps, DPBEA outperforms DSATUR and DGA until 5th time step. After that, all the

algorithms get the same results until the graph becomes fully connected. It shows that,

when the graph is close to fully-connected, all algorithms are successful to find the best

solution since there are a few possibilities to color the graph. Starting at 14th time step, a

random number of edges are removed from the graph, and DPBEA continues to

outperform DGA and DSATUR.

 Number of Colors Used State of Graph

Time Step DSATUR DGA DPBEA Edge Size Added Edges Removed Edges

1 1 1 1 0 2719 0

2 19,4 18,8 18 2719 1234 0

3 31,8 30,4 29,4 3953 555 0

4 43,8 40,8 39,2 4508 223 0

5 50,6 49,6 48,8 4731 120 0

6 62,2 62,2 62,2 4851 47 0

7 75 75 75 4898 32 0

8 86 86 86 4930 8 0

9 91 91 91 4938 4 0

10 94 94 94 4942 5 0

11 97 97 97 4947 1 0

12 98 98 98 4948 2 0

13 100 100 100 4950 0 0

14 58,4 58,2 58 4838 267 357

15 50,2 51 49,8 4748 336 411

16 48,4 46,8 46 4673 384 425

17 46,8 45,2 43 4632 412 454

18 47,6 43,4 42 4590 442 427

19 46,4 44,8 43 4605 440 441

20 45 43,4 42 4604 436 447

21 49 45,4 44,6 4593 422 454

22 46,2 43,6 42 4561 485 452

Figure 3. 17 – Results of the algorithms when an edge-dynamic graph is becoming

fully connected step by step

47

4. CONCLUSION

Dynamic graph coloring problem has been explored for two years. DGCP can be

generalized and studied with many different domains which can be inspired from real

world problems. In this study, we considered basic dynamic graph models and changed

their edges or nodes in a given number of times. According to types of changing, we

separated our dynamic graph models as node-dynamic and edge-dynamic graphs.

We implemented two heuristic algorithms DSATUR and DGA which are adapted to

DGCP in [32]. After we analyzed weaknesses of the heuristic algorithms for DGCP, we

purposed an evolutionary algorithm which is called dynamic pool-based evolutionary

algorithm. DPBEA became a powerful algorithm for DGCP with its novel crossover

operator called DPBC.

We tested DSATUR, DGA and DPBEA in node-dynamic and edge-dynamic graphs

with some test parameters. In node-dynamic graphs, DPBEA outperforms DSATUR and

DGA but it spends more execution time than DSATUR and DGA. In edge-dynamic

graphs, DPBEA has better adaptation and uses the computation time efficiently besides

outperfoming DGA and DSATUR in most of the test cases. However, DSATUR has

better results than DPBEA when the tested graphs have large number of nodes and small

number of edges. Whereas DPBEA still needs some improvements for these type of

graphs as a future work.

48

5. FUTURE WORK

The proposed evolutionary algorithm in this study is designed for basic undirected

and unweighted dynamic graph models as node-dynamic and edge-dynamic graphs. Since

there are only a few studies on dynamic graph coloring problem in the literature and their

dynamic graphs are generated randomly with a limited number of parameters, DPBEA is

tested on random-generated graphs with the same parameters in order to compare with

the other algorithms fairly. Eventhough we improved test parameters of edge-dynamic

graphs, the dynamic graph models may change in different ways that have not been

searched. Therefore, generation of node-dynamic and edge-dynamic graphs can be

analyzed in more detail and their test parameters can be improved in another study.

Besides that, real-world optimization problems which are suitable to model the node-

dynamic and edge-dynamic graphs can be searched and their graphs can be proposed as

benchmarks for DGCP.

Concerning types of dynamic graphs, the studies in the literature are focused on two

types of dynamic graph models which are defined in [35] in order to solve dynamic graph

coloring problem. However, there are many real-world optimization problems which can

be built on node-edge-dynamic graph model and there are no studies in the literature for

solving this graph model in an efficient way. Moreover, weighted dynamic graph models

in dynamic graph coloring problem are untouched areas and applicable for solving

dynamic resource allocation problems.

As a final future work plan, DPBEA can be improved for the other dynamic graph

models that are mentioned above, thanks to its powerful adaptation.

49

6. REFERENCES

[1] Garey, M. R., & Johnson, D. S. (1979). A Guide to the Theory of NP-

Completeness. WH Freemann, New York, 70.

[2] Leighton, F. T. (1979). A graph coloring algorithm for large scheduling

problems. Journal of research of the national bureau of standards, 84(6), 489-

506.

[3] de Werra, D. (1985). An introduction to timetabling. European journal of

operational research, 19(2), 151-162.

[4] Gamst, A. (1986). Some lower bounds for a class of frequency assignment

problems. IEEE transactions on vehicular technology, 35(1), 8-14.

[5] Sungu, G., & Boz, B. (2015, July). An evolutionary algorithm for weighted graph

coloring problem. In Proceedings of the Companion Publication of the 2015

Annual Conference on Genetic and Evolutionary Computation (pp. 1233-1236).

ACM.

[6] Topcuoglu, H. R., Demiroz, B., & Kandemir, M. (2007). Solving the register

allocation problem for embedded systems using a hybrid evolutionary

algorithm. IEEE Transactions on Evolutionary Computation, 11(5), 620-634.

[7] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins, M. E., &

Markstein, P. W. (1981). Register allocation via coloring. Computer

languages, 6(1), 47-57.

[8] Chow, F. C., & Hennessy, J. L. (1990). The priority-based coloring approach to

register allocation. ACM Transactions on Programming Languages and Systems

(TOPLAS), 12(4), 501-536.

[9] Garey, M., Johnson, D., & So, H. (1976). An application of graph coloring to

printed circuit testing. IEEE Transactions on circuits and systems, 23(10), 591-

599.

[10] Caramia, M., & Dell’Olmo, P. (2002). Vertex coloring by multistage branch and

bound‖. Johnson et al.(2002b), 40-47.

[11] Méndez-Díaz, I., & Zabala, P. (2006). A branch-and-cut algorithm for graph

coloring. Discrete Applied Mathematics, 154(5), 826-847.

[12] Mehrotra, A., & Trick, M. A. (1996). A column generation approach for graph

coloring. informs Journal on Computing, 8(4), 344-354.

50

[13] Brélaz, D. (1979). New methods to color the vertices of a graph. Communications

of the ACM, 22(4), 251-256.

[14] Hertz, A., & de Werra, D. (1987). Using tabu search techniques for graph

coloring. Computing, 39(4), 345-351.

[15] Davis, L.: Order-based genetic algorithms and the graph coloring problem. In:

Davis, L. (ed.) Handbook of Genetic Algorithms, pp. 72–90. Van Nostrand

Reinhold, N. Y. (1991).

[16] Galinier, P., & Hao, J. K. (1999). Hybrid evolutionary algorithms for graph

coloring. Journal of combinatorial optimization, 3(4), 379-397.

[17] Chams, M., Hertz, A., & De Werra, D. (1987). Some experiments with simulated

annealing for coloring graphs. European Journal of Operational Research, 32(2),

260-266.

[18] Blöchliger, I., & Zufferey, N. (2008). A graph coloring heuristic using partial

solutions and a reactive tabu scheme. Computers & Operations Research, 35(3),

960-975.

[19] Galinier, P., Hertz, A., & Zufferey, N. (2008). An adaptive memory algorithm for

the k-coloring problem. Discrete Applied Mathematics, 156(2), 267-279.

[20] Lü, Z., & Hao, J. K. (2010). A memetic algorithm for graph coloring. European

Journal of Operational Research, 203(1), 241-250.

[21] Wu, Q., & Hao, J. K. (2013). An adaptive multistart tabu search approach to solve

the maximum clique problem. Journal of Combinatorial Optimization, 26(1), 86-

108.

[22] Jin, Y., Hao, J. K., & Hamiez, J. P. (2014). A memetic algorithm for the minimum

sum coloring problem. Computers & Operations Research, 43, 318-327.

[23] Jin, Y., & Hao, J. K. (2016). Hybrid evolutionary search for the minimum sum

coloring problem of graphs. Information Sciences, 352, 15-34.

[24] Galinier, P., Hamiez, J. P., Hao, J. K., & Porumbel, D. (2013). Recent advances

in graph vertex coloring. Handbook of optimization, 505-528.

[25] Fleurent, C., & Ferland, J. A. (1996). Genetic and hybrid algorithms for graph

coloring. Annals of Operations Research, 63(3), 437-461.

[26] Starkweather, T., McDaniel, S., Mathias, K. E., Whitley, L. D., & Whitley, C.

51

(1991, July). A Comparison of Genetic Sequencing Operators. In ICGA (pp. 69-

76).

[27] Myszkowski, P. (2008). Solving scheduling problems by evolutionary algorithms

for graph coloring problem. Metaheuristics for Scheduling in Industrial and

Manufacturing Applications, 145-167.

[28] Nguyen, T. T., Yang, S., & Branke, J. (2012). Evolutionary dynamic optimization:

A survey of the state of the art. Swarm and Evolutionary Computation, 6, 1-24.

[29] Gamache, M., Hertz, A., & Ouellet, J. O. (2007). A graph coloring model for a

feasibility problem in monthly crew scheduling with preferential

bidding. Computers & operations research, 34(8), 2384-2395.

[30] Cremonezi, B. M., Vieira, A. B., Nacif, J. A. M., & Nogueira, M. (2017, March).

A Dynamic Channel Allocation Protocol for Medical Environment under Multiple

Base Stations. In Wireless Communications and Networking Conference

(WCNC), 2017 IEEE (pp. 1-6). IEEE.

[31] Barba, L., Cardinal, J., Korman, M., Langerman, S., van Renssen, A., Roeloffzen,

M., & Verdonschot, S. (2017, July). Dynamic Graph Coloring. In Workshop on

Algorithms and Data Structures (pp. 97-108). Springer, Cham.

[32] Monical, C., & Stonedahl, F. (2014, July). Static vs. dynamic populations in

genetic algorithms for coloring a dynamic graph. In Proceedings of the 2014

Annual Conference on Genetic and Evolutionary Computation (pp. 469-476).

ACM.

[33] Yuan, L., Qin, L., Lin, X., Chang, L., & Zhang, W. (2017). Effective and Efficient

Dynamic Graph Coloring. Proceedings of the VLDB Endowment, 11(3).

[34] van der Hauw, J. K. (1996). Evaluating and improving steady state evolutionary

algorithms on constraint satisfaction problems. Master's thesis, Leiden University.

[35] Harary, F., & Gupta, G. (1997). Dynamic graph models. Mathematical and

Computer Modelling, 25(7), 79-87.

[36] Porumbel, D. C., Hao, J. K., & Kuntz, P. (2010). An evolutionary approach with

diversity guarantee and well-informed grouping recombination for graph

coloring. Computers & Operations Research, 37(10), 1822-1832.

[37] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. science, 220(4598), 671-680.

52

[38] Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & operations research, 13(5), 533-549.

[39] Sungu, G., & Boz, B. (2017, April). Solving Dynamic Graph Coloring Problem

Using Dynamic Pool Based Evolutionary Algorithm. In European Conference on

the Applications of Evolutionary Computation (pp. 189-204). Springer, Cham.

[40] Chiarandini, M., & Stützle, T. (2002, September). An application of iterated local

search to graph coloring problem. In Proceedings of the Computational

Symposium on Graph Coloring and its Generalizations (pp. 112-125).

[41] Malaguti, E., Monaci, M., & Toth, P. (2008). A metaheuristic approach for the

vertex coloring problem. INFORMS Journal on Computing, 20(2), 302-316.

 RESUME

GİZEM SÜNGÜ

Marmara University, Goztepe Campus

Engineering Faculty, Computer Science and Engineering Dept.

Room: MB341, PK:34722, Kadikoy, Istanbul, Turkiye

Phone (Cell)+90-536-740-8921

e-mail: gizem.sungu@marun.edu.tr, gizemsungu@gmail.com

EDUCATION

M.S., Computer Science Marmara University, Faculty of Engineering, Istanbul, Turkey, Ongoing. Thesis

Topic: Solving Dynamic Graph Coloring Problem By Using A

Heuristic Algorithm, Advisor: Asst. Prof. Dr. Betül DEMİRÖZ BOZ.

B.S., Computer Science Marmara University, Istanbul, Turkey, 2015

WORK EXPERIENCE

2017-... Research Assistant, Gebze Technical University, Institute of Information Technologies, Kocaeli,

Turkey

PUBLICATIONS

Gizem Sungu, Betul Boz: An evolutionary algorithm for weighted graph coloring problem.

In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and

Evolutionary Computation (pp. 1233-1236). ACM.

Gizem Sungu, Betul Boz. (2017, April). Solving Dynamic Graph Coloring Problem Using Dynamic Pool

Based Evolutionary Algorithm. In European Conference on the Applications of Evolutionary

Computation (pp. 189-204). Springer, Cham.

RESEARCH INTERESTS

Graph Coloring Problem, Evolutionary Algorithms, Dynamic Optimization, Bioinformatics

FOREIGN LANGUAGES

English

mailto:gizem.sungu@marun.edu.tr
mailto:gizemsungu@gmail.com
http://mimoza.marmara.edu.tr/~betul.demiroz/

