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Abstract

In this thesis, we define the chamber complex of a given matrix A that is the
collection of the chambers we could obtain by moving the halfspaces whose outer
normal vectors are given by the rows of A. Moreover, we present an algorithm inspired
by the previous works of McMullen, Sturmfels, Henk et. al., Emiris et. al., Beck and
others on the chamber of a polytope and the vector partition function. The algorithm
works fast for the matrices that have rank two, but it is too slow for most of the
matrices of rank three and for matrices of rank more than 3. In order to understand
the structure of the chamber complex that can help to improve the algorithm, we
consider the chamber complex and its chambers with the toric variety aspect. For a
given chamber complex, we examine the toric variety of the normal fan associated to
each chamber and also the toric variety of the chamber complex, and present our
observations.
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Introduction

In this thesis we define the chamber complex of a given matrix A that is the collection of
all chambers we can obtain for A. Moreover, we present an algorithm inspired by the
previous works by McMullen, Emiris et. al., Henk et. al., Brion et. al., Sturmfels and
others on the chamber of a polytope, and the vector partition function. However, the
algorithm we have is too slow for most of the cases in dimension 3 and for dimension
more than 3. In order to understand the structure of the chamber complex better, we
consider the toric variety associated to the chambers of a given chamber complex, and the
toric variety of a given chamber complex. In this thesis we present some examples and
observations that can be helpful for the future works on improving the algorithm we have.

A polytope P ∈ Rd is the bounded intersection of finitely many closed halfspaces,
i.e., the solution set of the system Ax ≤ b of inequalities for some matrix A ∈ Rm×d and
b ∈ Rm. The Minkowski sum of two polytopes P and Q is defined as

P +Q = {x+ y : x ∈ P, y ∈ Q} .

The chamber (or type cone, or Minkowski cone) CP of the polytope P was first defined
by McMullen in 1973 in [10] which presents a way to answer the question asking, for a
given polytope P ⊂ Rd, whether there exist two polytopes R,S ⊂ Rd (called summands),
that are not obtained by dilating or shrinking or translating P , and whose Minkowski
sum R+ S gives P . If such polytopes exist, then P is called decomposable, if not, P is
called indecomposable. The chamber CP is the cone of all vectors c ∈ Rm for which the
solution set Pc of Ax ≤ c gives a polytope that is strongly combinatorially equivalent to
P , i.e., they have the same normal fan (collection of the cones generated by the normal
vectors of the faces). McMullen stated that a polytope P is indecomposable if and only if
the chamber CP of P is one dimensional. Moreover, the generating rays of the chamber
give information about the indecomposable summands of P , i.e., for a point d ∈ Rm,
taken from one of the generating rays of CP , the polytope given by the solution set of
Ax ≤ d is an indecomposable summand of P . Since then, Emiris et. al.[6], Henk et.
al. [8], Brion et. al.[3], Beck [1] and others worked on the chamber and its applications
to integer programming and combinatorics. Sturmfels in 1994 [11]proved that for each
chamber CP , there exists a vector partition function that gives the number of lattice
points of the polytope Pc for any point c taken from CP . The vector partition function
became a very useful tool in Ehrhart theory as the vector partition function of a chamber
CP is indeed an Ehrhart polynomial.

A given matrix A ∈ Rm×d of rank d corresponds to the set of outer normal vectors of
the defining half spaces. For any vector b ∈ Rm, the solution set Pb =

{
x ∈ Rd : Ax ≤ b

}
is

a polytope. Replacing the right hand side vector b with another vector c ∈ Rm corresponds
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to moving the halfspaces along the directions given by A. Each such replacement gives
another polytope that may have different combinatorial type, i.e., they have different
relations between their faces. Being given a polytope indeed corresponds to having
a fixed matrix A and a right hand side vector b that fixes the polytope Pb, i.e., the
combinatorial type. The chamber CP is the cone of those vectors b, such that the
movement of hyperplanes preserves the combinatorial type.

In this thesis, we present the chamber complex defined as, for a given matrix A ∈ Rm×d,
the collection of all the chambers one can obtain by changing the right hand side vector
in the system of inequalities Ax ≤ b. In particular, there is one chamber for each
combinatorial type one can obtain by moving the halfspaces whose directions are given by
A. When the chamber complex of a given matrix A has only one top-dimensional chamber,
the chamber complex of A coincides with the closure of the chamber of the polytope
P whose chamber is the top-dimensional cone in the chamber complex. However, we
observed that for some matrices A, there can be more than one top-dimensional chambers
in the chamber complex of A (See the Example 2.2.1.2). We describe an algorithm that
computes the chamber complex of a given matrix A (See Algorithm 2.1). The algorithm
we describe is too slow for computing the chamber complex of most of the matrices of
rank 3 and for matrices of rank bigger than 3, although the algorithm from previous
works would be fast. We also know that the algorithm from previous works is not enough
to get the chamber complex when it has more than one top dimensional chambers as we
cannot realize the chamber complex as the closure of the chamber of a polytope.

We have the following approach in order to understand the structure of the chamber
complex better and have some observations that can help to improve the algorithm we
have with a future work.

One of the classical objects of algebraic geometry is toric varieties. We mentioned
above that for each chamber in the chamber complex, there is one associated combinatorial
type. Moreover, we have that for each chamber C, there is one associated normal fan
such that all polytopes Pb for b in C have the same normal fan. Let us consider the toric
varieties of the normal fans associated to the chambers. When we move in the chamber
complex from one chamber to another, the toric varieties of the associated normal fans
change and when two chambers have a common face, the toric varieties have a common
sub-variety. In Chapter 3, we focus on the change on of the toric varieties associated to
the chambers of a given chamber complex and provide theorems on the change, when the
chambers are neighbor in specific conditions (See Theorem 3.0.0.2 and Theorem 3.0.0.3).

As each chamber itself is a strictly convex rational polyhedral cone, we can also
consider the toric variety of the chamber complex. Moreover, every toric variety XΣ has a
natural torus action on it, and the number of fixed points is the number of top dimensional
cones of the fan Σ. We have the observation that the number of top dimensional chambers
of the chamber complex CA of a given matrix A is the number of the fixed points of the
torus action γ : T ×XCA

→ XCA
where XCA

is the toric variety of the chamber complex
CA (See Theorem 3.0.1.2).
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Chapter 1

Preliminaries

1.1 Polyhedral Geometry

In this section, we give the necessary definitions to understand the theory of the chamber
and the chamber complex.

Let A = {a1, · · · , am} ∈ Rm×d be an arbitrary but fixed matrix such that rank(A) = d.
Let Hi be a closed half-space for i ∈ {1, · · · ,m} which can be written as

Hi =
{
x ∈ Rd : 〈ai, x〉 ≤ bi

}
for some bi ∈ R such that ai is the outer normal vector of Hi. A polytope Pb is the
bounded intersection of finitely many (in this setting “m") closed half spaces, i.e.,

Pb =
m⋂
i=1

Hi =
m⋂
i=1

{
x ∈ Rd : 〈ai, x〉 ≤ bi

}
.

Thus, Pb is the solution set of the system of inequalities and can be expressed as

Pb =
{
x ∈ Rd : Ax ≤ b

}
where b = (b1, · · · , bm). We can add slack variables and turn the system of inequalities
into a system of equalities and express Pb as

Pb =

{
x ∈ Rd : [A, I]

[
x
y

]
= b, y ≥ 0

}
.

Being given the matrix A ∈ Rm×d of rank d corresponds to having a fixed set of outer
normal vectors of half spaces Hi =

{
x ∈ Rd : 〈ai, x〉 ≤ bi

}
for some bi ∈ R for i ∈ [m].

Furthermore, changing the components bi of the right hand side vector b corresponds to
moving the half spaces Hi around. When we move the half spaces by inserting a different
vector b′ , the intersection

⋂m
i=1Hi changes and some half spaces may become redundant

for the polytope Pb′ =
⋂m
i=1Hi.

Example 1.1.0.1. Consider A = {a1 = (1, 0), a2 = (0, 1), a3 = (−1, 0), a4 = (0,−1), a5 = (1, 1)}
that is the set of normal vectors of the closed-halfspaces that are illustrated by Figure 1.1a,
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~a1

~a2

~a3

~a4

~a5

(a) Outer normal vectors
given by A

Pa

(b) Outer normal vectors of
Pa

Pb

(c) Outer normal vectors of
Pb

Figure 1.1: Outer normal vectors of halfspaces and their appearance on polytopes

• For a = (1, 1, 0, 0, 1), the halfspaces H1 =
{
x ∈ Rd : 〈a1, x〉 ≤ b1

}
and H2 ={

x ∈ Rd : 〈a2, x〉 ≤ b2
}
become redundant for Pa =

⋂5
i=1Hi =

⋂5
i=3Hi which is

demonstrated in Figure 1.1b.

• When we consider Figure 1.1c , we see that there is no redundant halfspace for

Pb =

5⋂
i=1

Hi =
{
x ∈ Rd : Ax ≤ b,

}
where b = (2, 2, 0, 0, 3).

Figure 1.2 illustrates some polytopes that can be obtained by moving Hi’s. We can get
a square or triangle or the other polytope that appears in the figure.

Figure 1.2: Different polytopes that can be obtained by moving halfspaces

Note on the notation: Note that any d-dimensional polytope P can be expressed
as

P =
{
x ∈ Rd : Ax ≤ b

}
for some matrix A ∈ Rm×d and some vector b ∈ Rm.

For polytopes, we use the notation with different letters (P,Q etc.) when the polytopes
do not need to be defined by the same matrix. We use the notation with sub indexes
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(Pb, Pc etc.) when it is important for us that the polytopes are defined by the same matrix
A and different right hand side vectors that we put as index.

Definition 1.1.0.2. Two polytopes P and Q are called combinatorially equivalent if they
have the same face lattices.

Example 1.1.0.3. The polytopes below have the following face lattices.

A B

CD

E F

GH

Figure 1.3: Combinatorially equivalent polytopes

Since they have the same face lattice, i.e., they have the same relations between their
faces, they are combinatorially equivalent.

Definition 1.1.0.4. Given a d−dimensional polytope P , the support function for P is
defined as

h(P, ·) : Rd → R, h(P, v) = sup {〈v, x〉 : x ∈ P} .

A hyperplane
H(P, v) =

{
x ∈ Rd : 〈x, v〉 = h(P, v)

}
for v ∈ Rd \ {0} is called a supporting hyperplane of P .

Example 1.1.0.5. H1, . . . ,H5 are supporting hyperplanes of P illustrated in Figure 1.4.
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P

H1

H2

H3

H4

H5

Figure 1.4: Supporting hyperplanes of the polytope P

Definition 1.1.0.6. The intersection of a polytope P ∈ Rd with a supporting hyperplane
H(P, v) is called a face of P . A (d− 1)-dimensional face of P is called a facet.

Example 1.1.0.7. In Figure 1.5, F1, . . . , F5 are facets of P as each Fi for i ∈ [5] is
intersection of Hi with P . Moreover, v34, v23, v25, v15, v14, which are intersections of two
hyperplanes with the polytope, are one dimensional faces of P .

P

H1

H2

H3

H4

H5

F1

F2

F3

F4

F5

v34 v14

v15

v25v23

Figure 1.5: Faces of the polytope P

Definition 1.1.0.8. The normal cone N(F, P ) of a face F of a polytope P is the set of
all vectors v ∈ Rd for which the supporting hyperplane H(P, v) contains F , that is

N(F, P ) = {v ∈ R:F ⊆ H(P, v) ∩ P} .

The collection of all normal cones of all faces of P is called the normal fan N(P )
of P .

N(P ) = {N(F, P ) : F is a face of P} .

In other words, for a given polytope P , the face cone N(F, P ) of a facet F of P is the
cone generated by the normal vector of F . Since we can express the lower dimensional
faces of P by the intersection of some facets, the normal cone of a lower dimensional face
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V = F1 ∩ . . . ∩ Fn of P , where Fi’s are some facets of P , is the cone generated by the
normal vectors of F1, . . . , Fn.

Example 1.1.0.9. In this example, we illustrate the normal cones of faces and normal
fans of the polytopes P and Q that are given in Figure 1.6.

Pa
Q

Figure 1.6: Normal fans of the polytopes P and Q

The cones N(P ) contains The cones N(Q) contains
Cones Generating rays

N(F1, P ) (0, 1)
N(F2, P ) (1, 0)
N(F3, P ) (−1, 0)
N(F4, P ) (0,−1)
N(V12, P ) (0, 1), (1, 0)
N(V13, P ) (0, 1), (−1, 0)
N(V24, P ) (1, 0), (0,−1)
N(V43, P ) (0,−1), (−1, 0)

Cones Generating rays
N(F1, Q) (−1, 0)
N(F2, Q) (0,−1)
N(F3, Q) (1, 1)
N(V12, Q) (−1, 0), (0,−1)
N(V13, Q) (−1, 0), (1, 1)
N(V23, Q) (0,−1), (1, 1)

For a given matrix A = {a1, · · · , am} ∈ Rm×d, i.e., set of outer normal vectors, and
for any non-empty polytope Pb =

{
x ∈ Rd : Ax ≤ b

}
, it is clear from the definition of the

normal fan of a polytope, that the set of generating rays of the normal fan N(Pb) is a
subset of A, and it is exactly A, when there is no redundant halfspace for Pb.

Definition 1.1.0.10. Two polytopes P , Q are called strongly combinatorially equivalent
if and only if they have the same normal fan.

Example 1.1.0.11. Consider Figure 1.7. One can observe that P and Q are neither
combinatorially equivalent, nor strongly combinatorially equivalent while P and R are
combinatorially equivalent, but not strongly combinatorially equivalent.
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Pa R
Q

Figure 1.7: Polytopes P,Q and R, and their normal fans

The cones N(P ) contains The cones N(R) contains The cones N(Q) contains
Cones Generating rays

N(F1, P ) (0, 1)
N(F2, P ) (1, 0)
N(F3, P ) (−1, 0)
N(F4, P ) (0,−1)
N(V12, P ) (0, 1), (1, 0)
N(V13, P ) (0, 1), (−1, 0)
N(V24, P ) (1, 0), (0,−1)
N(V43, P ) (0,−1), (−1, 0)

Cones Generating rays
N(F1, R) (0, 1)
N(F2, R) (2, 1)
N(F3, R) (0,−1)
N(F4), R (−2, 1)
N(V12, R) (0, 1), (2, 1)
N(V23, R) (2, 1), (0,−1)
N(V34, R) (0,−1), (−2, 1)
N(V14, R) (0, 1), (−2, 1)

Cones Generating rays
N(F1, Q) (−1, 0)
N(F2, Q) (0,−1)
N(F3, Q) (1, 1)
N(V12, Q) (−1, 0), (0,−1)
N(V13, Q) (−1, 0), (1, 1)
N(V23, Q) (0,−1), (1, 1)

When we consider the normal fans of the polytopes K and L given by Figure 1.8, we
see that their normal fans are the same, such that K and L are strongly combinatorially
equivalent.

The cones N(K) contains The cones N(L) contains
Cones Generating rays

N(F1,K) (0, 1)
N(F2,K) (1, 0)
N(F3,K) (−1, 0)
N(F4,K) (0,−1)
N(F5,K) (1, 1)
N(V13,K) (0, 1), (−1, 0)
N(V15,K) (0, 1), (1, 1)
N(V52,K) (1, 1), (1, 0)
N(V43,K) (0,−1), (−1, 0)
N(V24,K) (1, 0), (0,−1)

Cones Generating rays
N(F1, L) (0, 1)
N(F2, L) (1, 0)
N(F3, L) (−1, 0)
N(F4, L) (0,−1)
N(F5, L) (1, 1)
N(V13, L) (0, 1), (−1, 0)
N(V15, L) (0, 1), (1, 1)
N(V52, L) (1, 1), (1, 0)
N(V43, L) (0,−1), (−1, 0)
N(V24, L) (1, 0), (0,−1)

8



K L

Figure 1.8: Normal fans of the strongly combinatorially equivalent polytopes K and L

Definition 1.1.0.12. The Minkowski sum of two polytopes P,Q ⊂ Rd is defined as
follows;

P +Q = {x+ y : x ∈ P, y ∈ Q} .

Example 1.1.0.13. The Minkowski sum of given polytopes

P =

x ∈ R2 : A =


1 0
0 1
−1 0

0 −1

x ≤ b =


1
1
0
0




and Q =

x ∈ R2 :

 −1 0
0 −1
1 1

x ≤ c =

 0
0
1



is P +Q =

x ∈ R2 :


1 0
0 1
−1 0

0 −1
1 1

x ≤


2
2
0
0
3


 and illustrated in Figure 1.9.
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+ =
P Q

P +Q

Figure 1.9: Minkowski sum of two polytopes P and Q

We can also add redundant halfspaces and define P and Q with the same matrix such
that

P =

x ∈ R2 : A =


1 0
0 1
−1 0

0 −1
1 1

x ≤ b =


1
1
0
0
2




and Q =

x ∈ R2 :


1 0
0 1
−1 0

0 −1
1 1

x ≤ c =


1
1
0
0
1


 .

Thus, P +Q =

x ∈ R2 :


1 0
0 1
−1 0

0 −1
1 1

x ≤


2
2
0
0
3


 .

The Minkowski sum with redundant hyperplanes is demonstrated in Figure 1.10. After
taking the sum, the redundant hyperplanes become non-redundant and support the polytope
P +Q.
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Figure 1.10: Illustration of the Minkowski sum with the same hyperplanes

Definition 1.1.0.14. Two polytopes P,Q ⊂ Rd are called homothetic if and only if
P = λQ+ t for some λ ∈ R≥0 and t ∈ Rd.

In other words, when we translate or dilate a polytope P , the combinatorial type of
the P does not change and we obtain the polytope which is homothetic to P .

Example 1.1.0.15. Consider the polytope P =

x ∈ R2 : A =


1 0
0 1
−1 0

0 −1

x ≤ b =


1
1
0
0


.

P , P + (0, 1) and 3
2P have the same combinatorial type and they are homothetic as illus-

trated in the figure 1.11.

−2 −1 1 2 3
−1

1

2

3

4

0

P

1 2 3 4
−1

1

2

3

4

0

P + (0, 1)

−1 1 2 3 4
−1

1

2

3

4

0

3
2P

Figure 1.11: Homothetic Polytopes
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Definition 1.1.0.16. A polytope P ⊂ Rd is called decomposable if there are polytopes
Q,R, that are not homothetic to P , such that

P = Q+R.

If there are no such polytopes Q,R, then P is called indecomposable. Q and R are
called summands of P .

Example 1.1.0.17. The polytope P in Figure 1.12 is decomposable as there are non-
homothetic polytopes Q,R whose Minkowski sum is P , where

P =

x ∈ R2 :


1 0
0 1
−1 0

0 −1
1 1

x ≤


2
2
0
0
3


 ,

Q =

x ∈ R2 : A =


1 0
0 1
−1 0

0 −1
1 1

x ≤ b =


1
1
0
0
2




and R =

x ∈ R2 :


1 0
0 1
−1 0

0 −1
1 1

x ≤ c =


1
1
0
0
1


 .

+ =
P Q

= +
P Q R

Figure 1.12: Minkowski decomposition of the polytope P

Consider a decomposition of the polytope K given in Figure 1.13. The polytope 1
2K that

appears as a summand is homothetic to K, so this is not a non-homothetic decomposition.
In fact, K is indecomposable.
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= +
K

1
2K

1
2K

Figure 1.13: Homothetic decomposition of the polytope K

Remark 1.1.0.18. Given a polytope P ⊂ Rd, for any polytope Q that is homothetic to
P , N(Q) = N(P ), i.e., they are strongly combinatorially equivalent. However, a polytope
R, that is strongly combinatorially equivalent to P , does not need to be homothetic to P .

Example 1.1.0.19. Consider polytopes P =

x ∈ R2 :


1 0
0 1
−1 0

0 −1

x ≤


2
2
0
0


,

Q = 2P and R =

x ∈ R2 :


1 0
0 1
−1 0

0 −1

x ≤


2
3
0
0




illustrated in figure 1.14.

R
P

Q = 2P

Figure 1.14: Relation between being homothetic and strongly combinatorially equivalent

Polytopes P,Q and R are strongly combinatorial equivalent since they have the same
normal fan. However, the polytope R is not homothetic to P while the polytope Q is.
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Definition 1.1.0.20. A polyhedral complex is a collection ∆ of polyhedral cones satisfying
the following.

• If K ∈ ∆ and F is a face of K, then F ∈ ∆,

• If K,L ∈ ∆, K ∩ L is either empty or a face of K and a face of L.

1.2 Toric Varieties

In this section, we give the definitions that are needed to understand the relation between
the toric variety of a fan and a chamber of a chamber complex.

Definition 1.2.0.1. Let R ⊂ C[x1, . . . , xm] be a polynomial ring. For a given ideal
I ⊂ R, the affine variety associated to I is

V (I) = {p ∈ Cm : f(p) = 0 for all f ∈ I} .

Moreover, for a given variety V ⊂ Cm, the ideal associated to V is

I(V ) = {f ∈ R : f(p) = 0 for all p ∈ V } .

The coordinate ring associated to V is C[V ] = R/I(V ).

Theorem 1.2.0.2 (Hilbert’s Nullstellensatz ). With the notation used above,

I(V (I)) =
√
I =

{
f ∈ R : f l ∈ I for some l ≥ 1

}
.

Let us recall some facts on the coordinate rings. C[V ] is an integral domain if and
only if I(V ) is a prime ideal if and only if V is irreducible, i.e., if V = A ∪B where A,B
are affine varieties, V = A or V = B.

Definition 1.2.0.3. A polyhedral cone σ = {x ∈ Rm : x =
∑r

i=1 viλi, λi ∈ R≥0} = Pos(v1, . . . , vm)
with generators {v1, . . . , vm} is called a rational cone (lattice cone) if the generators of σ
belong to a lattice N ∼= Zm ⊂ Rm.

A cone σ is called strictly convex if it contains no line going through the origin, i.e.,
σ ∩ (−σ) = {0}.

Definition 1.2.0.4. A strictly convex polyhedral cone σ ⊂ Rm is called smooth or regular
if the minimal generators of σ spans Zm.

Definition 1.2.0.5. The dual cone σ∗ of a cone σ is defined as follows:

σ∗ = {y ∈ (Rm)∗ : 〈y, x〉 ≥ 0, ∀x ∈ σ} .

Example 1.2.0.6. Consider the cone σ =
{
x ∈ R2 : x = (2, 2)λ1 + (−4, 2)λ2, λi ∈ R≥0

}
is illustrated in Figure 1.15.

14



σσ1 σ2

Figure 1.15: The cone σ

In order to find the dual cone σ∗ of σ, we first find the dual cones of σ1, σ2 as
demonstrated in Figure 1.16.

(σ1)∗

(σ2)∗

Figure 1.16: Dual cones of σ1 and σ2

The dual cone σ∗ is the intersection of the duals of the generating rays. Namely,

σ∗ = (σ1)∗ ∩ (σ2)∗ = 〈e∗1 + 2e∗2,−e∗1 + e∗2〉

illustrated in Figure 1.17.

(σ1)∗
(σ2)∗

σ∗

Figure 1.17: The cone σ∗

Definition 1.2.0.7. If σ is a lattice cone (rational), i.e., its generators are contained in
a lattice N ∼= Zm ⊂ Rm , then σ∗ is also a rational cone such that its generators belong
to the lattice M = HomZ(N,Z) ∼= Zm ⊂ (Rm)∗ (dual lattice of N).

Definition 1.2.0.8. Let σ be a cone and let u ∈ σ∗ ∩M where M is a lattice in (Rm)∗.
A face τ of σ is defined as

τ = σ ∩ u⊥ = {x ∈ σ : 〈u, x〉 = 0} .

15



Example 1.2.0.9. Consider the cone σ generated by 2e1 + 2e2 and −4e1 + 2e2 and
consider the cone σ1 generated by −4e1 + 2e2 as a face of σ.

σσ1 σ2

The vector u = 2e1 + 4e2 ∈ σ∗ satisfies that σ1 = σ ∩ u⊥.

σ1

σ∗ u

Lemma 1.2.0.10. Gordan’s Lemma
If σ is a polyhedral lattice (rational) cone, then σ ∩N is a finitely generated monoid

satisfying the simplification law (s+ t = s
′
+ t⇒ s = s

′ for s, s′ and t are in S = σ ∩N).

When we consider the dual cone σ∗ of σ and apply the lemma, we have that σ∗ ∩M
denoted by Sσ is a finitely generated monoid.

Example 1.2.0.11. Consider the cone σ1generated by −2e1 + e2.

σ1

The intersection Sσ1 = (σ1)∗ ∩M ∼= Z2 ∈ R2 is the monoid generated by

e∗1 + 2e∗2, −e∗1, e∗2, −e∗1 − e∗2, and − e∗1 − 2e∗2.

e∗1 + 2e∗2

(σ1)∗

−e∗1

e∗2

−e∗1 +−e∗2

−e∗1 +−2e∗2

16



Now, let us consider the ring C[z1, . . . , zm, z
−1
1 , . . . , z−1

m ] = C[z, z−1] which is called
the ring of Laurent polynomials. A Laurent monomial is of the form λza = λza1 · · · zam
where λ ∈ C∗ and a = (a1, . . . , am) is in Zm.

Remark 1.2.0.12. The mapping

φ : Zm → C[z, z−1]

a = (a1, . . . , am)→ za11 · · · z
am
m

is an isomorphism between the group (Zm,+) and the group (LM, ·) where LM is the set
of monic Laurent monomials (coefficients are 1).

Definition 1.2.0.13. The support of a polynomial f =
∑

finite λaz
a is defined as

supp(f) = {a ∈ Zm : λa 6= 0}

Proposition 1.2.0.14. For a rational polyhedral cone σ, the ring

Rσ =
{
f ∈ C[z, z−1] : supp(f) ⊂ σ∗ ∩M = Sσ

}
is a finitely generated monomial algebra which is generated by the monomials φ(sσi), where
sσi are generators of Sσ and

φ : Zm → C[z, z−1], a = (a1, . . . , am)→ za11 · · · z
am
m .

In order to associate the ring Rσ to a coordinate ring, let us consider the ring
C[x1, · · · , xk] of polynomials in k variables over C. A finitely generated monomial algebra
Rσ can be written as C[x1 · · · , xk]/I for some k and the ideal I where the ideal is generated
by the relations between the monomials in Rσ.

Example 1.2.0.15. From the previous example, we know that the monoid Sσ1 for the
cone σ1 = Pos(−2e1 + e2) is generated by

e∗1 + 2e∗2, −e∗1, e∗2, −e∗1 − e∗2, and − e∗1 − 2e∗2.

σ1

e∗1 + 2e∗2

(σ1)∗

−e∗1

e∗2

−e∗1 +−e∗2

−e∗1 +−2e∗2
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By the mapping φ : Z2 → C[z, z−1],

φ((1, 2)) = z1z
2
2 , φ((0, 1)) = z2, φ((−1, 0)) = z−1

1 ,

φ((−1,−1)) = z−1
1 z−1

2 and φ((−1,−2)) = z−1
1 z−2

2 .

Thus, Rσ1 is generated by the monomials

m1 = z1z
2
2 , m2 = z2, m3 = z−1

1 , m4 = z−1
1 z−1

2 and m5 = z−1
1 z−2

2 .

We can express Rσ1 as

Rσ1 = C[m1, . . . ,m5] = C[x1, . . . x5]/Iσ1 .

Moreover, the generating monomials have the following relations:

m4m3 = m5, m2m4 = m3, m1m5 = 1.

Thus, the ideal Iσ1 is generated by the relations x4x1 = x2, x1x
2
4 = x3, x1x5 = 1.

Definition 1.2.0.16. The toric variety Xσ of a strictly convex, rational polyhedral cone
σ is defined as

Xσ =
{
x ∈ Ck : f(x) = 0, f ∈ Iσ

}
= Specmax(Rσ)

where Specmax(Rσ) is the set of all maximal ideals of Rσ and Rσ = C[Xσ].

Example 1.2.0.17. In the Example 1.2.0.15, Iσ1 was the ideal generated by the relations
x4x1 = x2, x1x

2
4 = x3, x1x5 = 1. The toric variety Xσ1 for the cone σ1 = Pos(−2e1 +e2)

is the following set:
Xσ1 =

{
x ∈ C5 : f(x) = 0, f ∈ Iσ1

}
Since we mention about the fixed points of the torus action on variety in the chapter 3,

let us give another definition of a toric variety.

Definition 1.2.0.18. A toric variety X is an irreducible affine variety containing a torus
T ∼= (C∗)m as a Zariski open subset such that the action of T on itself extends to an
action γ : T ×X → X of T on X.

Please note that a torus T is an affine toric variety that is isomorphic to (C∗)m which
is a group under component-wise multiplication.

Theorem 1.2.0.19 (Cox, Little, Schenk [4]). Definition 1.2.0.16 with the given construc-
tion and Definition 1.2.0.18 are equivalent.

For more information on the torus action and toric varieties, you may check [4], [9],
[7].

18



1.2.1 Toric Varieties and Polytopes

In the previous section, we defined the toric variety of a cone. In this section we consider
the toric variety of a fan, that is a collection of polyhedral cones satisfying some conditions.
Then we observe the toric variety of the normal fan of a polytope, which helps us to
illustrate the connection of the chamber complex with toric varieties.

For a given cone σ, when we consider a face σ1 = σ ∩ u⊥ of σ with u ∈ Sσ, we see
that the monoid

Sσ1 = {Sσ + t.(−u) : t ∈ Z≥0}

is obtained by adding one more generator. Namely, for Sσ and Rσ with r generators,
Sσ1 and Rσ1 have r + 1 generators. Thus, we can obtain Rσ = C[x1, . . . , xr]/Iσ from
Rσ1 = C[x1, . . . , xr+1]/Iσ1 by adding an additional relation.

Remark 1.2.1.1. For a rational polyhedral cone σ and a face σ1 of σ with r, r + 1
generators respectively, there is an identification Xσ1

∼= Xσ\(xr+1 = 0)

For cones σ and α having a common face σ1, we can glue σ and α on their common
part via the map,

ψασ : Xσ \ (xr+1 = 0) ∼= Xσ1
∼= Xα \ (yk+1 = 0).

Definition 1.2.1.2. A fan Σ in Rd is a finite union of cones such that:

• Every cone in Σ is strictly convex, polyhedral, lattice cone,

• Every face of a cone of Σ is a cone of Σ,

• If σ1, σ2 are cones in Σ, then σ1 ∩ σ2 is a common face of σ1 and σ2.

From the last two conditions, one may deduce that a fan Σ is a polyhedral complex.

Furthermore, the support of a fan Σ is |Σ| =
⋃
σ∈Σ σ.

A fan Σ ⊂ Rd is called complete if it spans Rd. For example, for a polytope P , the
normal fan N(P ) is complete.

In order to compute the toric variety of a fan Σ, we first find the toric variety of the
maximal cones of Σ and then glue them along the common faces of the cones with a
gluing map ψ.

Example 1.2.1.3. Consider the fan Σ containing the following cones as illustrated in
Figure 1.18.
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Cones Generators
σ1 e1 = (1, 0)
σ2 e2 = (0, 1)
σ3 −e1 = (−1, 0)
σ4 −e2 = (0,−1)
σ12 e1 = (1, 0), e2 = (0, 1)
σ23 e2 = (0, 1),−e1 = (−1, 0)
σ34 −e1 = (−1, 0),−e2 = (0,−1)
σ14 e1 = (1, 0),−e2 = (0,−1)

σ1

σ2

σ3

σ4

σ12σ23

σ34 σ14

Figure 1.18: Fan Σ

• The dual cone σ∗12 of σ12 is generated by {e∗1, (e2)∗} which are also the generators
of the monoid Sσ12.

By the map φ : Z2 → C[z, z−1],

φ(1, 0) = z1 and φ(0, 1) = z2.

Since there is no relation between the monomials z1 and z2,

Rσ12 = C[z1, z2] = C[x1, x2] and Xσ12 = C2.

• The dual cone σ∗23 = Pos(e∗2, (−e1)∗), and the monoid Sσ23 is generated by {e∗2, (−e1)∗}.
By the map φ : Z2 → C[z, z−1],

φ(0, 1) = z2 and φ(−1, 0) = z−1
1 .

Monomials z2 and z−1
1 have no relation. Thus,

Rσ23 = C[z2, z
−1
1 ] = C[x1, x2] and Xσ23 = C2.

• σ∗34 = Pos((−e1)∗, (−e2)∗), and the monoid Sσ34 has the same generators as σ∗34.
By the map φ : Z2 → C[z, z−1],

φ(−1, 0) = z−1
1 and φ(0,−1) = z−1

2 .

Since the monomials z−1
1 and z−1

2 have no relation,

Rσ34 = C[z−1
1 , z−1

2 ] = C[x1, x2] and Xσ34 = C2.

• The dual cone σ∗14 is generated by {e∗1, (−e2)∗} and Sσ14 has the same generators.
By the map φ : Z2 → C[z, z−1],

φ(1, 0) = z1 and φ(0,−1) = z−1
2 .

The monomials z1 and z−1
2 has no relation,

Rσ14 = C[z1, z
−1
2 ] = C[x1, x2] and Xσ14 = C2.
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Now, we have the toric variety for each maximal cone of the fan Σ. In order to
obtain the toric variety of the fan, we also need to consider the common faces of the
cones as the gluing map will be define on them.

The cone σ12 has a common face σ1 with the cone σ14. We have the following gluing
map between Xσ12 = Specmax(C[z1, z2]) and Xσ14 = Specmax(C[z1, z

−1
2 ]) along σ1 :

φ14
12 : Xσ12 \ (x2 = 0)→ Xσ14 \ (x−1

2 = 0) with φ14
12((x1, x2)) = (x1, x

−1
2 ).

The cone σ12 has a common face σ2 with the cone σ23. We have the following gluing
map between Xσ12 = Specmax(C[z1, z2]) and Xσ23 = Specmax(C[z−1

1 , z2]) along σ2 :

φ23
12 : Xσ12 \ (x1 = 0)→ Xσ23 \ (x−1

1 = 0) with φ23
12((x1, x2)) = (x−1

1 , x2).

The cone σ23 has a common face σ3 with the cone σ34. We have the following gluing
map between Xσ23 = Specmax(C[z−1

1 , z2]) and Xσ34 = Specmax(C[z−1
1 , z−1

2 ]) along σ3 :

φ34
23 : Xσ23 \ (x2 = 0)→ Xσ34 \ (x−1

2 = 0) with φ34
23((x−1

1 , x2)) = (x−1
1 , x−1

2 ).

The cone σ34 has a common face σ4 with the cone σ14. We have the following gluing
map between Xσ34 = Specmax(C[z−1

1 , z−1
2 ]) and Xσ14 = Specmax(C[z1, z

−1
2 ]) along σ4 :

φ34
14 : Xσ14 \ (x1 = 0)→ Xσ34 \ (x−1

1 = 0) with φ14
34((x1, x

−1
2 )) = (x−1

1 , x−1
2 ).

The variety XΣ of the fan Σ consists of the varieties Xσij and the date of the gluing
maps.

Now, consider coordinates [x0 : x1] of P1 and [y0 : y1] of another P1 and the map
α : Xij → P1 × P1 sending (z1, z2) to (x0x1 ,

y0
y1

), where Xσij ∈ Σ.

Please note that the map α is onto as

α(Xσ12) = α(z1, z2) = (
x0

x1
,
y0

y1
) where x1, y1 6= 0

α(Xσ23) = α(z−1
1 , z2) = (

x1

x0
,
y0

y1
) where x0, y1 6= 0

α(Xσ34) = α(z−1
1 , z−1

2 ) = (
x1

x0
,
y1

y0
) where x0, y0 6= 0

α(Xσ14) = α(z1, z
−1
2 ) = (

x0

x1
,
y1

y0
) where x1, y0 6= 0

moreover, it can be checked that it is an isomorphism so that XΣ
∼= P1 × P1.
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Proposition 1.2.1.4 (Cox, Little, Schenk [4]). Let Σ1 ∈ Rn and Σ2 ∈ Rm be two fans.
Then,

Σ1 × Σ2 = {σ1 × σ2 : σi ∈ Σi} is a fan in Rn × Rm

and XΣ1×Σ2 = XΣ1 ×XΣ2 .

Example 1.2.1.5. Consider the fan Σ1 ∈ R consisting of the cones

σ11 = Pos(e1) and σ12 = Pos(−e1), illustrated in Figure 1.19,

and the fan Σ2 ∈ R consisting of the cones σ21 = Pos(e2) and σ22 = Pos(−e2)
demonstrated in Figure 1.20.

e1−e1

Figure 1.19: Fan Σ1

e2

−e2

Figure 1.20: Fan Σ2

The corresponding varieties are XΣ1 = P1 and XΣ2 = P1.
The fan Σ1 × Σ2 consist of the fallowing cones as illustrated in Figure 1.18

Cones Generators
σ1 e1 = (1, 0)
σ2 e2 = (0, 1)
σ3 −e1 = (−1, 0)
σ4 −e2 = (0,−1)
σ12 e1 = (1, 0), e2 = (0, 1)
σ23 e2 = (0, 1),−e1 = (−1, 0)
σ34 −e1 = (−1, 0),−e2 = (0,−1)
σ14 e1 = (1, 0),−e2 = (0,−1)

and the variety is XΣ1×Σ2 = XΣ1 ×XΣ2 = P1 × P1 as given in the Example 1.2.1.3.
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In the previous sections, for a given polytope, we defined the normal fan of the
polytope. Now we also now that as soon as we have a fan, we can compute the toric
variety of it. In other words, when we are given a polytope P ∈ Rd, we are given the
normal fan N(P ), i.e., it is a complete fan, we also have XN(P ).

Example 1.2.1.6. The Hirzebruch surface Hn is the toric variety of the fan demonstrated
in Figure 1.21 consisting of the following cones:

e1

e2

−e2

−e1 + ne2

Figure 1.21: The fan of the Hirze-
bruch surface Hn

Cones Generators
σ1 e1

σ2 e2

σ3 −e2

σ4 −e1 + ne2

σ12 e1, e2

σ13 e1,−e2

σ34 −e2,−e1 + ne2

σ24 e2,−e1 + ne2

For n = 2, the normal fan of the polytope Pk =
{
x ∈ R2 : Ax ≤ k

}
, where

A =


1 0
0 1
0 −1
−1 2

 and k =


1
1
0
2

 ,

is the same as the fan of the Hirzebruch surface H2. The polytope Pk is illustrated in
Figure 1.22 and N(Pk) has the following cones:

Cones Generators
σ1 (1, 0)
σ2 (0, 1)
σ3 (0,−1)
σ4 (−1, 2)
σ12 (1, 0), (0, 1)
σ13 (1, 0), (0,−1)
σ34 (0,−1), (−1, 2)
σ24 (0, 1), (−1, 2)

Pk

Figure 1.22: The polytope Pk whose
normal fan is the fan of H2

Remark 1.2.1.7. For a d-dimensional simplex ∆d, the toric variety of the normal fan
N(∆d) is XN(∆d) = Pd.
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Definition 1.2.1.8. Let Σ be a fan in Rm and let σ be a smooth cone in Σ with generators
{v1, . . . , vm}. Let v0 = v1 + . . .+ vm and Σ

′
(σ) be the set of all cones generated by the

subsets of {v0, . . . , vm} not containing {v1, . . . , vm}. Then

Σ∗ = Σ \ {σ} ∪ Σ
′
(σ)

is a fan in Rm and called the star subdivision of Σ along σ.

Example 1.2.1.9. Consider the fan Σ illustrated in Figure 1.23 containing the following
cones:

σ1

σ2

σ3

σ4

σ12σ23

σ34 σ14

Figure 1.23: Fan Σ

Cones Generators
σ1 v1 = (1, 0)
σ2 v2 = (0, 1)
σ3 v3 = (−1, 0)
σ4 v4 = (0,−1)
σ12 v1 = (1, 0), v2 = (0, 1)
σ23 v2 = (0, 1), v3 = (−1, 0)
σ34 v3 = (−1, 0), v4 = (0,−1)
σ14 v1 = (1, 0), v4 = (0,−1)

Consider the smooth cone σ12 ∈ Σ and let v0 = (1, 0) + (0, 1) = (1, 1). Then we have
Σ
′
(σ12) = {σ0 = Pos(v0), σ01 = Pos(v0, v1), σ02 = Pos(v0, v2)} as the set of all cones

generated by subsets of {v0, . . . , v4} that does not contain {v1, . . . , v4}. By the definition,
the star subdivision of Σ along σ12 is Σ∗ = Σ \ {σ12} ∪ Σ

′ which is the fan illustrated in
Figure 1.24 with the following cones:

σ1

σ2

σ3

σ4

σ23

σ34 σ14

σ01

σ02 σ0

Figure 1.24: Fan Σ∗

Cones Generators
σ0 v0 = (1, 1)
σ1 v1 = (1, 0)
σ2 v2 = (0, 1)
σ3 v3 = (−1, 0)
σ4 v4 = (0,−1)
σ01 v0 = (1, 1), v1 = (1, 0)
σ02 v0 = (1, 1), v2 = (0, 1)
σ23 v2 = (0, 1), v3 = (−1, 0)
σ34 v3 = (−1, 0), v4 = (0,−1)
σ14 v1 = (1, 0), v4 = (0,−1)

Definition 1.2.1.10. Given a fan Σ, we say that a fan Σ
′ refines Σ if every cone in Σ

′

is contained in a cone of Σ and |Σ| = |Σ′ | (the support of a fan Σ is |Σ| =
⋃
σ∈Σ σ).

24



Proposition 1.2.1.11 (Cox, Little, Schenk [4]). Σ∗ is a refinement of Σ and the induced
toric morphism φ : XΣ∗ → XΣ makes XΣ∗ the blow up of XΣ at the distinguished point
γσ corresponding to the cone σ.
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Chapter 2

Chamber Complex

2.1 Chamber

Given a polytope P ⊂ Rd, the natural question arises of whether P is decomposable,
and if it is, whether we can know the summands. In 1973, McMullen[10] presented a
method to answer this question by defining the type cone (Minkowski cone or chamber)
of a polytope. This theory started to have a quite important role in the theory of vector
partition functions by the paper of Sturmfels [11] proving that for each chamber, there is
an associated piece-wise polynomial. Further studies were made on the chambers and
vector partition functions by Brion et al.[3], Beck [1] and others. Moreover, Henk et
al. in [8] considered integer decomposition of polytopes and their application to integer
programming. Emiris et al.[6] and Brion et al.[3] also provided different algorithms to
compute the chamber of a polytope.

In this section, we give the definition of the chamber of a given polytope and provide
existed methods to compute it.

In 1973, McMullen[10] defined the type cone (chamber, Minkowski cone) of a polytope
as follows.

Definition 2.1.0.1. For a given polytope P =
{
x ∈ Rd : Ax ≤ b

}
for some matrix A ∈

Rm×d and some vector b ∈ Rm, the chamber (type cone, Minkowski cone) CPb
of Pb is

the cone of vectors c ∈ Rm for which Pc is strongly combinatorially equivalent to Pb.

Moreover, he proved the following:

Theorem 2.1.0.2 ( McMullen [10]). A d-dimensional polytope P is indecomposable if
and only if the chamber CP is one dimensional.

Theorem 2.1.0.3 ( McMullen [10]). For a given d-dimensional polytope P , the chamber
CP is a polyhedral complex.

Theorem 2.1.0.4 ( McMullen [10]). For a given d-dimensional polytope P , each face of
the closure of the chamber CP is a chamber.

Theorem 2.1.0.2 gives the answer of the question asking whether a given polytope Pb
is decomposable as by the theorem, it is enough to check the dimension of CPb

. If CPb
has

dimension more than one, then we can find some information about the indecomposable
summands of Pb by considering the generating rays of CP . By Theorem 2.1.0.4, the faces
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of the chamber are also chambers. Thus, while points c taken from the interior of CP
give polytopes that are strongly combinatorially equivalent to P , polytopes Pd for points
taken from one of the generating rays of CPb

are strongly combinatorial equivalent to one
of the indecomposable summands of Pb.

We provide examples and more details about the chamber of a given polytope in the
folloving parts of this section. Let us explain the process of computing the chamber of a
polytope considering the method given by Brion et al. [3].

To begin with, we fist need to define the cone of non-empty polytopes of a given
matrix A ∈ Rm×d.

Definition 2.1.0.5. For a given matrix A ∈ Rm×d of rank d, the set C(A) of non-empty
polytopes is the set of vectors b ∈ Rm for which

Pb =
{
x ∈ Rd : Ax ≤ b

}
=

{
x ∈ Rd : [A, I]

[
x
y

]
= b, y ≥ 0

}
is non-empty, i.e.,

C(A) = {b ∈ Rm : Pb 6= ∅} .

Since polytopes Pb are non-empty if and only if the system Ax ≤ b has a non-empty
solution set, and one can add slack variables to the system of inequality to get a system
of equalities,

[A, I]

[
x
y

]
= b, where I is the identity matrix and y ∈ Rm≥0 so that,

C(A) = {b ∈ Rm : Pb 6= ∅} = C(A, I) = {b ∈ Rm : Pb 6= ∅} .

The system [A, I]

[
x
y

]
= b of equalities has a non-empty solution if and only if

the vector b is a linear combination of the columns of the matrix A and positive linear
combinations of the columns of I. Thus,

C(A) = C(A, I) =

b ∈ Rm : b =
d∑
i=1

λiai +
m∑
j=1

βjej :
ai is a column of A
ej is a column of I
λi ∈ R, βj ∈ R≥0

 .

For each b of the form b =
∑d

i=1 λiai +
∑m

j=1 βjej , (λ1, . . . , λd) ∈ Rd is a solution for the
system of equalities.

In other words, the set C(A) = C(A, I) is a cone whose generating lines are the
columns of A, and whose generating rays are the columns of the identity matrix.

As mentioned above, we may get polytopes Pb of different combinatorial types by
inserting different vectors b which corresponds to moving the halfspaces. The cone C(A)
contains all such vectors. Moreover, for a vector b taken from C(A), Pb is non-empty and
since the translations Pb + t = Pb+At are also non-empty, b+At ∈ C(A).

As the polytopes that are the translations of Pb are homothetic to Pb, we do not want
to distinguish between vectors that give rise to translations of Pb in C(A). McMullen
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[10], Brion et al. [3] and Henk et al. [8] consider representations of polytopes such that
for each polytope and its translations, there is only one representative.

For any b ∈ C(A), and any vector t ∈ Rd,

Pb + t =
{
x+ t ∈ Rd : Ax ≤ b

}
=
{
y ∈ Rd : Ay ≤ At+ b

}
= Pb+At.

We define an equivalence relation ∼ on C(A) as

b ∼ b′ ⇐⇒ b− b′ ∈ ARd.

Lemma 2.1.0.6. The relation ∼ defined above is an equivalence relation on C(A).

Proof. • ∼ is reflexive, since for all b ∈ C(A),

b− b = 0 ∈ ARd ⇐⇒ b ∼ b

• ∼ is symmetric, since for all a, b ∈ C(A),

b ∼ a⇒ b− a = c ∈ ARd ⇒ a− b = −c ∈ ARd ⇒ a ∼ b.

• ∼ is transitive, since for all a, b, c with a ∼ b and b ∼ c,

a− b ∈ ARd and b− c ∈ ARd ⇒ a− b+ b− c ∈ ARd ⇒ a− c ∈ ARd ⇒ a ∼ c.

Now we would like to have one representative for each equivalence class.

Lemma 2.1.0.7. C(A)
⋂{

b ∈ Rm : AT b = 0
}
has one representative from each equiva-

lence class.

Proof. Assume that b, b′ ∈ C(A)
⋂{

b ∈ Rm : AT b = 0
}
with b ∼ b′ and b 6= b

′ . Then we
have that b − b′ ∈ ARd, but b − b′ is also in

{
b ∈ Rm : AT b = 0

}
, since they are taken

from the intersection. We also have that
{
b ∈ Rm : AT b = 0

}
is orthogonal to ARd. Since

for two orthogonal spaces S, S⊥, we know that S ∩S⊥ = ~0, b− b′ = 0 so that b = b
′ . This

is a contradiction.

The lines of the cone C(A) stands for translations, and when we intersect it with the
orthogonal space that is the right kernel of AT , the intersection has only one point such
that it has one representative from each equivalence class.

Thus the cone of non-empty polytopes that does not distinguish between translations
is

C̃(A) =
{
b ∈ Rm : Pb 6= ∅ and AT b = 0

}
= C(A)

⋂{
b ∈ Rm : AT b = 0

}
.

The chamber (or type cone, or Minkowski cone) of a polytope Pb is the cone of all
vectors b, that give polytopes that are strongly combinatorially equivalent to Pb so that
the type cone of Pb is indeed a subdivision of C̃(A). In other words, among all the vectors
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c ∈ C̃(A), we are interested in ones that give polytopes that are strongly combinatorially
equivalent to the given polytope Pb.

As we have a fixed set of outer normal vectors given by A, the set of normal vectors
of defining half spaces of non-empty polytopes that we can obtain, are subsets of A, so
that outer normals do not change, but some half spaces might become redundant. When
there are redundant half spaces, the combinatorial type changes. It means that there
might be some vectors c ∈ C̃(A) that give polytopes of different combinatorial types.

For d−dimensional simple polytopes, a vertex is the intersection of d hyperplanes.
Having redundant half spaces means that a vertex, defined by the intersection of the
redundant half spaces, is an element of a face of the polytope or it is not a part of the
polytope anymore.

Example 2.1.0.8. For A = {a1 = (1, 0), a2 = (0, 1), a3 = (−1, 0), a4 = (0,−1), a5 = (1, 1)},
the change of the vertices, so that the combinatorial type of polytopes

Pa =
{
x ∈ R5 : Ax ≤ a

}
, Pb =

{
x ∈ R5 : Ax ≤ b

}

for vectors a =


2
2
0
0
3

 and b =


1
1
0
0
2

 respectively, is illustrated below.

H1

H2

H3

H4

H5

Pa

v25

v15

H1

H2

H3

H4

H5

v25 = v15

Pb

When we move the hyperplane H5 by replacing the vector a with the vector b, two vertices
v25 and v15 become the same, so that the relation between faces changes.

Since the vertices are important for detecting the combinatorial type, we use them to
obtain the chamber of a given polytope as follows.

Let us take d subsets S of [m]. For each S and for each s in S, we shall turn
Hs =

{
x ∈ Rd : 〈as, x〉 ≤ bs

}
into Ĥs =

{
x ∈ Rd : 〈as, x〉 = bs

}
for some bs ∈ R. We are

interested in the vectors b, for which

Pb =
⋂

i∈[m]\S

Hi

⋂
j∈S

Ĥj

contains at least the vertex vS .
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Going back to the expression with slack variables, this process corresponds to adding
slack variables to the rows ai for i ∈ [m] \ S and not adding slack variables for the rows
aj for j ∈ S. Thus the cone C(A, IS) where IS = {ei ∈ I : i ∈ [m] \ S} is the cone that
contains all vectors b, for which

Pb =

{
x ∈ Rd : [A, IS ]

[
x
y

]
= b, y ≥ 0

}
=

⋂
i∈[m]\S

Hi

⋂
j∈S

Ĥj .

is non-empty.
For any b ∈ C(A, I), the chamber (or type cone, or Minkowski cone) of Pb is the

intersection

CPb
=

 ⋂
S⊂[m],|S|=d,b∈C(A,IS)

C(A, IS)

⋂{
b ∈ Rm : AT b = 0

}
.

When we do not take intersection with the right kernel of AT , the chamber contains
lines generated by the columns of the matrix A, which stand for the translations. Since
we do not want to distinguish between translations, we have the equivalence relation
we defined above and we take the intersection with

{
b ∈ Rm : AT b = 0

}
to have one

representative from each equivalence class.
The dimension of the chamber of a polytope Pb gives information about its decompos-

ability. If the chamber CPb
has dimension bigger than 1, Pb is decomposable. Moreover,

points c taken from the generating rays of CPb
give polytopes that are of the same combi-

natorial type as indecomposable summands Pc of Pb, and points d taken from the faces
of CPb

give the polytopes Pd that are of the same combinatorial type as decomposable
summands of Pb.

Example 2.1.0.9. For a given matrix A =


1 0
0 1
−1 0
0 −1
1 1

,

The cone of non-empty polytopes of A is the following

C̃(A) = C̃(A, I) = C(A, I)
⋂{

b ∈ R5 : AT b = 0
}
.

C(A, I) : A 5 dimensional polyhedron in R5 defined as the convex hull of one vertex, 3
rays and 2 lines.

Rays: [[−1, 0, 1, 0, 0] , [1, 0, 0, 0, 0] , [0, 1, 0, 0, 0]]

Lines: [[1, 0,−1, 0, 1] , [1,−1,−1, 1, 0]]{
b ∈ R5 : AT b = 0

}
: 3 dimensional polyhedron in R5 defined as convex hull of one

vertex and 3 lines.

Rays: [[1, 1, 0, 0,−1] , [0, 1, 0, 1, 0] , [1, 0, 1, 0, 0]]
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C̃(A) : A 3 dimensional polyhedron in R5 defined as the convex hull of one vertex and
3 rays.

Rays: [[5, 1, 3,−1,−2] , [1, 5,−1, 3,−2] , [−1,−1, 1, 1, 2]]

For each 2−subsets of [5], the cone C(A, IS) is illustrated in the table below.
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Table 2.1: Subsets S, the hyperplanes they fix and their cone of non-empty polytopes

S Fixed Hyperplanes Rays of C(A, IS)

{1, 2, 3}

H1

H2

H3

H4
H5

v45

[0, 0, 1, 0, 0],[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0]

{1, 2, 4}

H1

H2

H3

H4
H5

v35

[−1, 1, 1, 0, 0],[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0]

{1, 2, 5}

H1

H2

H3

H4 H5v34

[−1, 0, 1, 0, 0],[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0]

{1, 3, 4}

H1

H2

H3

H4
H5

v25

[−1, 1, 1, 0, 0],[0, 0, 1, 0, 0],
[1, 0, 0, 0, 0]

{1, 3, 5}

H1

H2

H3

H4
H5

[−1, 0, 1, 0, 0],[1, 0, 0, 0, 0]
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{1, 4, 5}

H1

H2

H3

H4
H5

v23 [−1, 0, 1, 0, 0],[−1, 1, 1, 0, 0],
[1, 0, 0, 0, 0]

{2, 3, 4}

H1

H2

H3

H4 H5

v15
[−1, 1, 1, 0, 0],[0, 0, 1, 0, 0],
[0, 1, 0, 0, 0]

{2, 3, 5}

H1

H2

H3

H4 H5v14

[−1, 0, 1, 0, 0],[0, 0, 1, 0, 0],
[0, 1, 0, 0, 0]

{2, 4, 5}

H1

H2

H3

H4
H5

[−1, 0, 1, 0, 0],[0, 1, 0, 0, 0]

{3, 4, 5}

H1

H2

H3

H4
H5

v12
[−1, 0, 1, 0, 0],[−1, 1, 1, 0, 0],
[0, 0, 1, 0, 0]

All cones listed above have the folloving lines:

Lines: [1, 0,−1, 0, 1] , [1,−1,−1, 1, 0] .

For b = (2, 2, 0, 0, 3), the chamber CPb
is the intersection ⋂

S⊂[m],|S|=d,b∈C(A,IS)

C(A, IS)

⋂{
b ∈ Rm : AT b = 0

}
which is the 3-dimensional polyhedron with the following rays:
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Rays: [1, 1, 1, 1, 0] , [3,−1, 5, 1, 2] , [−1, 3, 1, 5, 2]

Figure 2.1: The chamber of Pb

Consider the closure of the chamber CPb
. The generating rays of CPb

are the chambers
of the indecomposable summands of Pb so that for any point c taken form one of the
generating rays of CPb

, Pc is an indecomposable summand of Pb. In Figure 2.1, we see
that points from the three generating rays r1, r2, r3 of CPb

give a triangle, a vertical line
segment and a horizontal line segment. The right hand side vector v of the Minkowski
sum of those three polytopes is in the interior of the chamber CPb

and Pv is of the same
combinatorial type as Pb.

When we consider the faces of the closure of CPb
,we see that for a point g taken

from a face of CPb
gives the polytope Pg which is a decomposable summand of Pb. Pg is

decomposable, as its chamber which is the face of CPb
is two dimensional and generated

by two rays which give information about Pg’s indecomposable summands. We can see in
Figure that we get squares when we take a point from the face of CPb

, which is generated
by rays that give line segments, and a square is the Minkowski sum of two line segments.

Example 2.1.0.10. For a given matrix A =


−1 0
0 −1
1 2
1 1

,

C̃(A) = C̃(A, I) = C(A, I)
⋂{

b ∈ R4 : AT b = 0
}
.
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C(A, I) : A 4 dimensional polyhedron in R4 defined as the convex hull of one vertex, 2
rays and 2 lines.

Rays: [[2,−1, 0, 0] , [−1, 1, 0, 0]]

Lines: [[1, 0,−1, 0, 1] , [1,−1,−1, 1, 0]]{
b ∈ R4 : AT b = 0

}
: A 2 dimensional polyhedron in R4 defined as convex hull of one

vertex and 2 lines.
Lines: [[1, 1, 0, 1] , [1, 2, 1, 0]]

C̃(A) : A 2 dimensional polyhedron in R4 defined as the convex hull of one vertex and
2 rays.

Rays: [[0, 1, 1,−1] , [1, 0,−1, 2]]

For b = (0, 0, 7, 4), the chamber CPb
illustrated in figure 2.2 is the intersection ⋂

S⊂[m],|S|=d,b∈C(A,IS)

C(A, IS)

⋂{
b ∈ Rm : AT b = 0

}
which is the 2-dimensional polyhedron in R4 with the following rays:

Rays: [[1, 1, 0, 1] , [1, 2, 1, 0]]

Figure 2.2: Chamber of the Minkowski sum of two triangles

Here, we observe that the polytope Pb is the Minkowski sum of two triangles such that
points taken from the generating rays of CPb

give polytopes that are strongly combinatorially
equivalent to the indecomposable summands of Pb.

Now, let us consider the chamber CPd
for d = (1, 1, 0, 1).

It is a 1 dimensional polyhedron in R4 generated by the ray [1, 1, 0, 1]. It is indeed the
generating ray of the chamber CPb

.
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2.2 Chamber Complex

In the previous sections we defined the chamber of a polytope Pb =
{
x ∈ Rd : Ax ≤ b

}
for some A ∈ Rm×d and b ∈ Rm that is the cone of vectors c for which the polytopes Pc
are strongly combinatorial equivalent to Pb. When we have a fixed matrix A ∈ Rm×d and
we change the vector b, we can have an empty polytope or polytopes that are strongly
combinatorial equivalent or polytopes of different combinatorial types. The reason we
can have those cases is that while moving the half spaces by changing right hand side
vectors, the intersection might change.

We are interested in finding all combinatorial types one can obtain for a fixed matrix
A. In other words, we would like to find all different chambers we can have such that
each chamber is the set of vectors c for which polytopes Pc are strongly combinatorial
equivalent.

In this section we define the chamber complex for a given matrix A, present an
algorithm to compute it inspired by previous works by [10], [11], [3] and others.

Definition 2.2.0.1. Given a matrix A ∈ Rm×d of rank d, the chamber complex of A is
the collection of all chambers that can be obtained e.i., points form the same chamber give
poltopes that are strongly combinatorially equivalent when they are inserted as right hand
side vectors in the system Ax ≤ b of inequality.

As we mentioned at the beginning, for a given matrix A = {a1, · · · , am} ∈ Rm×d of
rank d, we have a fixed set of outer normal vectors of the half spaces Hi for some bi ∈ R for
i ∈ [m]. Changing the right hand side vectors b corresponds to moving those hyperplanes.
While moving the hyperplanes, the intersection of half spaces so that the polytope we
obtain, changes. When some half spaces become redundant during this process we obtain
polytopes of different combinatorial types. Please note that being polytopes of different
combinatorial types here means that the polytopes have different normal fans.

Example 2.2.0.2. One can observe from the figure 2.3 that when we move the half spaces
whose outer normal vectors are given by the matrix

A =


1 0
0 1
−1 0
0 −1
1 1


we may have some polytopes that are strongly combinatorially equivalent or that are of
different combinatorial types.

36



Figure 2.3: Polytopes of different combinatorial types one can obtain by moving the
hyperplanes

In order to illustrate the notion of the chamber complex better, let us consider the
example 2.1.0.9 in terms of the chamber complex of the matrix A, instead of the chamber
of a given polytope Pb for a given b.

Example 2.2.0.3. Consider matrix

A =


1 0
0 1
−1 0
0 −1
1 1

 .

Chamber complex for A consists of the following chambers.

Table 2.2: List of the chambers of the chamber complex of A, and examples of the
polytopes obtained by the points taken from the chambers

Chambers that the chamber
complex of A has

A polytope Pb for b taken from
the interior of the chamber

Chamber I: A 1-dimensional
polyhedron in Z5 defined as the
convex hull of 1 vertex and 1
ray. Rays:[3,−1, 5, 1, 2]

-5 -4 -3 -2 -1 1 2 3

-2

-1.5

-1

-0.5
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Chamber II: A 1-
dimensional polyhedron
in Z5 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[−1, 3, 1, 5, 2]

-2 -1.5 -1 -0.5

-5

-4

-3

-2

-1

1

2

3

Chamber III: A 1-
dimensional polyhedron
in Z5 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[1, 1, 1, 1, 0]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Chamber IV: A 2-
dimensional polyhedron
in Z5 defined as the convex
hull of 1 vertex and 2 ray.
Rays:[3,−1, 5, 1, 2]

Summands
-5 -4 -3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-6 -4 -2 2 4

-2
-1.5

-1
-0.5

Chamber V: A 2-
dimensional polyhedron
in Z5 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [1, 1, 1, 1, 0],
[−1, 3, 1, 5, 2]

Summands

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-2 -1.5 -1 -0.5

-5

-4

-3

-2

-1

1

2

3

-2-1.5-1-0.5

-6

-4

-2

2

4
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Chamber VI: A 2-
dimensional polyhedron
in Z5 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [3,−1, 5, 1, 2],
[−1, 3, 1, 5, 2]

Summands
-5 -4 -3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

-2 -1.5 -1 -0.5

-5

-4

-3

-2

-1

1

2

3

-6 -5 -4 -3 -2 -1 1 2

-6

-5

-4

-3

-2

-1

1

2

Chamber VII: A 3-
dimensional polyhedron
in Z5 defined as the con-
vex hull of 1 vertex and 3
ray. Rays: [1, 1, 1, 1, 0],
[3,−1, 5, 1, 2], [−1, 3, 1, 5, 2]

Summands

-1 -0.5 0.5 1

-1

-0.5

0.5

1
-5 -4 -3 -2 -1 1 2 3

-2

-1.5

-1

-0.5

-2 -1.5 -1 -0.5

-5

-4

-3

-2

-1

1

2

3

-6 -4 -2 2

-6

-4

-2

2

We can deduce from the table that Chamber VII is the top dimensional chamber of
the chamber complex and other chambers are faces of the Chamber VII. Thus we can
illustrate the chamber complex as the closure of the chamber of Pb for b = (3, 3, 7, 7, 4) as
in Figure 2.4 .
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Figure 2.4: Chamber complex as a closure of a chamber

Please note that in this example there was no vector b, but only the matrix A, while in
the example 2.1.0.9, we needed to be given a vector b such that we computed the chamber of
Pb. Finding the chamber complex for the matrix A corresponds finding different chambers,
i.e., each chamber is a set of vectors b, and stands for a different combinatorial type.

2.2.1 Number of Top Dimensional Chambers

In the example 2.2.0.3, we see that when the number of top dimensional chambers of the
chamber complex of a given matrix A, we can obtain the chamber complex by considering
the closure of the top dimensional chamber. Now we can ask weather a chamber complex
always have only one top dimensional chamber.

Question 2.2.1.1. Does a matrix A whose chamber complex has more than one top
dimensional chambers exist?

Answer 2.2.1.2. Yes!
For example, for the matrix

A =


0 0 1
−1 0 −1
0 1 −1
1 0 −1
0 −2 −1

 ,
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The chamber complex of A has the following chambers:

Chambers that the chamber
complex of A has

A polytope Pb for b taken from
the interior of the chamber

Chamber I: A 1-dimensional
polyhedron in Z5 defined as the
convex hull of 1 vertex and 1
ray. Rays:[19, 5, 6, 5, 3]

Chamber II: A 1-
dimensional polyhedron
in Z5 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[5, 7,−6, 7,−3]

Chamber III A 1-
dimensional polyhedron
in Z5 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[1,−1, 2,−1, 1]
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Chamber IV: A 2-
dimensional polyhedron
in Z5 defined as the con-
vex hull of 1 vertex and 2
ray. Rays:[19, 5, 6, 5, 3],
[5, 7,−6, 7,−3]

Summands

Chamber V: A 2-
dimensional polyhedron
in Z5 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [19, 5, 6, 5, 3],
[1,−1, 2,−1, 1]

Summands

As one can observe from the given table above, the chamber IV and chamber V are
top dimensional chambers we can obtain for A. Indeed we cannot express the chamber
complex of A in terms of the closure of one chamber, but the union of the closure of two
chambers. Namely, the union of the closure of CPa for a = (24, 12, 0, 12, 0) and the closure
of CPb

for b = (20, 4, 8, 4, 4).
Figure 2.5 demonstrates how the chamber complex of A looks like.
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Figure 2.5: The chamber complex of A that has more than one top dimensional chambers

The chamber complex does not have the chamber C ′ for which, for the points v taken
from C

′ , Pv gives the Minkowski sum of two line segments Pk, Pl where k and l are taken
from the chambers II and III respectively as the matrix A does not have the row (0, 0,−1)
which is the outer normal vector the half space that is needed to obtain a square by moving
the half spaces the rows of A defines.

As in the given example 2.2.1.2, we can have cases where the chamber of a matrix A
has more than one top dimensional chambers and it cannot be expressed as the closure of
a chamber of a polytope. Thus for those cases, we need another method to compute the
chamber complex.
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2.2.2 An Algorithm to Compute the Chamber Complex

For the cases where the chamber complex of a given matrix A ∈ Rm×d has more than
one top dimensional chambers, let us present the following algorithm.

Data: A matrix A ∈ Rm×d with m > d
Result: The chamber complex: the set of chambers one can get for A
if The matrix A has full rank then

m := Number of rows of A;
d =: Number of columns of A;
S := Subsets of [m] of size d;
I := Identity matrix of size m×m;
Cones = {};
for s ∈ S do

Is := {ei ∈ I : i ∈ [m] \ S} ;
C(A, s) := Polyhedron(rays = Is, lines = columns of A);
Add C(A, s) to Cones

end
ChamberComplex := {};
RightKernel := Polyhedron(rays=Generators of the right kernel of A);
for D in the power set P(Cones), D 6= ∅, D 6= Cones do

K :=
⋂
c∈D

c;

KK := K ∩RightKernel;
R := Set of generating rays of K;
if For all r ∈ R, dim(Pr) > 0 then Add KK to ChamberComplex;

end
for C1, C2 in ChamberComplex with dim(C1) = dim(C2) and C1 ∩ C2 = C1

do
Remove C2;

end
return ChamberComplex

else
Raise Exception

end
Algorithm 2.1: Algorithm for the chamber complex

Theorem 2.2.2.1. The algorithm 2.1 is correct.

Proof. Please note that the restrictions on the rank of A and on the relation between
number of columns and rows of A makes sure that the solution set is bounded or empty.
We are given a matrix A ∈ Rm×d and we would like to find all the chambers so that
combinatorial types we can get by moving the half spaces given by A.

Recall that for any b ∈ Rm, a polytope Pb can be expressed as follows:

Pb =
{
x ∈ Rd : Ax ≤ b

}
=

{
x ∈ Rd : [A, I]

[
x
y

]
= b, y ≥ 0

}
.
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Moreover, vertex of a d dimensional simple polytope is the intersection of d hyperplanes
and changes on the vertex arrangements change the combinatorial type of the polytope we
obtain. We take d subsets S of [m] and for each S, we add slack variables to the rows ai
for i ∈ [m] \ S and do not add slack variables for the rows aj for j ∈ S. This corresponds
to fixing d hyperplanes which makes sure that points taken from the cone give polytopes
whose normal fan contains the normal cone of the intersection of the d hyperplanes.

Thus for each S, the cone C(A, IS) where IS = {ei ∈ I : i ∈ [m] \ S} is the cone that
contains all vectors b, for which

Pb =

{
x ∈ Rd : [A, IS ]

[
x
y

]
= b, y ≥ 0

}
=

⋂
i∈[m]\S

Hi

⋂
j∈S

Ĥj .

is non-empty.
With this process, for each possible vertex obtained by fixing d of hyperplanes, we

obtain a cone of vectors b that encodes different half space arrangements for those that
are not fixed. As we see in the previous section, this method was also used by [10], [3], [8].

Let

Cones = {C(A, IS) : S ⊂ [m], |S| = d, IS = {ei ∈ I : i ∈ [m] \ S}}

be the set of all cones we obtain by fixing d hyperplanes. Now consider non-empty, proper
subsets of Cones. Having those subsets corresponds to have sets of some cones that make
sure of existence of the intersection of some hyperplanes.

For each non-empty proper subset D of Cones, the intersection
⋂
c∈D c is the set of

points b for which the polytope Pb has the vertices that c ∈ D defines.
As in the section 2.1, we do not want to distinguish between the translations of

polytopes, for each non-empty proper subset D of Cones, we consider the intersection

(
⋂
c∈D

c)
⋂{

b ∈ Rm : AT b = 0
}

However, each intersection is not a chamber because, some of them might be contained
in another or some of them might consist of points that only gives zero dimensional
polyopes.

Here we consider the following fact coming from the definition of type cone by
McMullen in [10] to eliminate the cones that are chambers.

For points b taken from the generating rays of a type cone, the polytope Pb has
dimension more than 0.

The last step of the algorithm makes sure that the cones of the same dimensional
are not contained in each other as by definition, chambers are the maximal cones for
which every point taken from it gives a polytope having the same normal fan when we
insert the point as a right-hand-side vector. For different candidates of chambers C1 and
C2 of the same dimension, if C2 contains C1, it means that C2 is not a chamber as each
chamber stands for a different combinatorial type and C2 cannot stand for a different
combinatorial type than C1 while containing C1.

45



Assume that C2 is a chamber and C1 is not a chamber. Since their dimensions are the
same and they are different, C2 has at least one more generator than C1. We know that
all points taken from the interior of a chamber give the polytopes of that are strongly
combinatorially equivalent, and that have the Minkowski summands of the same number.
Thus C1 has the same generators as C2 as it is contained in C2, and C2 is a chamber. It
is a contradiction.

Please note that it would not be the case if the cones of different dimension were
containing each other as the faces of the closure of a chamber are also chambers.

The following example illustrates for each d subset of [m], fixing d hyperplanes and
intersecting cones of non-empty polytopes.

Example 2.2.2.2. Consider the matrix A = [[1, 0], [0, 1], [−1, 0], [0,−1], [1, 1]] . When
we add slack variables for all row but the second and third rows such that we have the
following matrix [A, I145] 

1 0 0 1 0
0 1 0 0 0
−1 0 0 0 0

0 −1 1 0 0
1 1 0 0 1

 .

points form the cone of non-empty polytopes C(A, I145) have points b such that the
solution set of [A, I145][x, y] ≤ b is the vertex v2,3. Some of such vectors b can give
different supporting hyperplane arrangements of halfspaces that give polytopes of different
combinatorial types as illustrated in Figure 2.6.

v23 v23 v23
v23

Figure 2.6: Different supporting hyperplane arrangements of halfspaces that fixes hyper-
planes H2 and H3

For example some of the points from the intersection C(A, I145) ∩ C(A, I134) give the
halfspace arrangement like in Figure 2.7. Intersecting some of the cones of nonempty
polytopes reduces the number of different combinatorial types we can obtain.
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v23v25 v23 v25 v23 v25

Figure 2.7: Arrangement of supporting hyperplanes of the halfspaces given by some points
form C(A, I145) ∩ C(A, I134)

Example 2.2.2.3. In this example we provide list of chambers of the chamber complex
of different matrices computed by the algoritm 2.1.

Consider matrix A =



1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 −1
1 1 1

.

Chambers that the chamber
complex of A has

A polytope Pb for b taken from
the interior of the chamber Vertices of Pb

Chamber I: A 1-dimensional
polyhedron in Z6 defined as the
convex hull of 1 vertex and 1
ray. Rays:[5, 7,−1, 1, 2, 2]

Vertices:
[5,−1,−2]

[−7,−1,−2]
[−7,−1, 10]

Chamber II: A 1-
dimensional polyhedron
in Z6 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[−1, 1, 5, 7, 2, 2]

Vertices:
[−1,−7,−2]
[−1,−7, 10]
[−1, 5,−2]
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Chamber III A 1-
dimensional polyhedron
in Z6 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[−1, 1,−1, 1, 2, 2]

Vertices:
[−1,−1, 4]

[−1,−1,−2]

Chamber IV: A 1-
dimensional polyhedron
in Z6 defined as the convex
hull of 1 vertex and 1 ray.
Rays:[1, 1, 1, 1, 0, 0]

Vertices:
[−1, 1, 0]
[1,−1, 0]

[−1,−1, 2]
[−1,−1, 0]

Chamber V: A 2-
dimensional polyhedron
in Z6 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [5, 7,−1, 1, 2, 2],
[1, 1, 1, 1, 0, 0]

Summands

Vertices:
[4, 0,−2],

[6,−2,−2],
[−8,−2, 12],
[−8,−2,−2],
[−8, 0,−2]
[−8, 0, 10]

48



Chamber VI: A 2-
dimensional polyhedron
in Z6 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [1, 1, 1, 1, 0, 0],
[−1, 1, 5, 7, 2, 2]

Summands

Vertices:
[−2, 6,−2],
[0,−8, 10],
[0, 4,−2],

[0,−8,−2],
[−2,−8,−2]
[−2,−8, 12],

Chamber VII: A 2-
dimensional polyhedron
in Z6 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [5, 7,−1, 1, 2, 2],
[−1, 1, 5, 7, 2, 2]

Summands

Vertices:
[4,−8,−4],
[4,−8, 8],
[4, 4,−4],

[−8, 4,−4],
[−8, 4, 8]

[−8,−8,−4],
[−8,−8, 20]

Chamber VIII: A 2-
dimensional polyhedron
in Z6 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [5, 7,−1, 1, 2, 2],
[−1, 1,−1, 1, 2, 2]

Summands

[4,−2, 2],
[4,−2,−4],

[−8,−2,−4],
[−8,−2, 14]
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Chamber IX: A 2-
dimensional polyhedron
in Z6 defined as the con-
vex hull of 1 vertex and 2
ray. Rays: [−1, 1, 5, 7, 2, 2],
[−1, 1,−1, 1, 2, 2]

Summands

Vertices:
[−2,−8, 14],
[−2,−8,−4],

[−2, 4, 2],
[−2, 4,−4]

Chamber X: A 3-
dimensional polyhedron
in Z6 defined as the con-
vex hull of 1 vertex and 3
ray. Rays: [1, 1, 1, 1, 0, 0],
[5, 7,−1, 1, 2, 2],
[−1, 1, 5, 7, 2, 2]

Summands

Vertices:
[5,−9,−4],
[5,−9, 8],
[5, 3,−4],
[3, 5,−4],
[−9, 5, 8]

[−9, 5,−4],
[−9,−9,−4],
[−9,−9, 22]
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Chamber XI: A 3-
dimensional polyhedron
in Z6 defined as the convex
hull of 1 vertex and 3 ray.
Rays: [5, 7,−1, 1, 2, 2],
[−1, 1, 5, 7, 2, 2],
[−1, 1,−1, 1, 2, 2]

Summands

Vertices:
[3,−9, 12],
[3,−9,−6],

[3, 3, 0],
[3, 3,−6],
[−9, 3,−6]
[−9, 3, 12],

[−9,−9, 24],
[−9,−9,−6]

For the matrix A =



0 1 1
1 0 1
1 0 0
0 1 0
0 0 −1
0 0 1
0 −1 0
1 −1 1
−1 0 0
−1 0 1


the code is too slow to compute the chamber complex.

The algorithm is very slow for matrices in Rm×3 having more than 7 rows as for the
matrix A given at the end of the example 2.2.2.3. As we mentioned before, when there
is only one top dimensional chamber in the chamber complex, one can use the existing
algorithm from previous works to compute the chamber of a polytope Pb for some b taken
form the top dimensional chamber, and take the closure of it. However, when the chamber
complex has more than one top dimensional chambers, the algorithm we have can be used.
Being able to answer the following question would be helpful to decide which algorithm
we use to compute the chamber complex end.

Question 2.2.2.4. For a given matrix A ∈ Rm×d, what is the number of top dimensional
chambers that the chamber complex of A has?

In the process of answering this question, and understanding the structure of the
chamber complex better, we have the following approach given in the next chapter.
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Chapter 3

Toric Varieties and the Chamber
Complex

In the previous section, we defined the chamber complex which is the collection of
chambers that one can obtain for a given matrix A ∈ Rm×d. We also know that for each
combinatorial type one can obtain by moving the halfspaces given by the matrix A, we
have a chamber associated to it such that for each point c, taken from the same chamber,
the polytope Pc have the same normal fan. In other words, for each chamber in the
chamber complex, there is a normal fan associated to it.

In this section, for each chamber of a given chamber complex, we consider the toric
variety of its associated normal fan in order to understand the structure of the chamber
complex better.

Recall that the normal fan N(P ) of a polytope P is the collection of the normal cones
N(F, P ) of faces F of the polytope. Moreover, the normal fan N(P ) is a polyhedral
complex such that the intersection of two cones σ1, σ2 is either the empty set or a face of
σ1 and σ2.

Given a matrix A ∈ Rm×d, each non-empty polytope we can obtain by inserting a
vector b ∈ Rm and considering the solution set of Ax ≤ b are defined by the half spaces
defined by the outer vectors given by the rows of A. The change of the combinatorial
type of the polytopes we can obtain occurs when some half spaces get redundant. Having
a redundant half space means that its outer vector does not generate a one dimensional
cone in the normal fan of the polytope.

Now, let us consider the chamber complex of A ∈ Rm×d. When two chambers C1

and C2 of the chamber complex are neighbors such that they have a common face C3,
it means that polytopes Pc1 =

{
x ∈ Rd : Ax ≤ c1

}
for a taken c1 ∈ C1, and Pc2 ={

x ∈ Rd : Ax ≤ c1

}
for a taken c2 ∈ C2 have a common Minkowski summand that has

the same normal fan as the associated normal fan of C3. In other words, the normal
fans N(Pc1) and N(Pc2) have some common one dimensional cones as, the set of the
outer normals of a Minkowski sum are the union of the set of the outer normals of the
summands.Please note that they might also have common higher dimensional cones. For
the toric variety perspective, it means that the toric varieties XN(Pc1 ) and XN(Pc2 ) have
some common open subsets, where N(Pc1) and N(Pc2) are the associated normal fans of
the chambers C1 and C2 respectively.

Please note that, when we consider the toric vairety of the normal fan associated to a
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chamber C, we consider the fan in the space where it is complete, i.e., the normal fan
spans the space.

Let us show the change of the toric varieties of the associated chambers of a chamber
complex on the following example.

Example 3.0.0.1. Consider the chamber complex of the matrix A =


1 0
0 1
−1 0

0 −1
1 1

 .
The chamber complex of A was presented in Example 2.2.0.3. In this example we will

also consider the associated normal fans of the chambers and their toric varieties.
In figure 3.1, you can see the illustration of the chambers in the chamber complex

and an example of polytopes one can obtain by taking points form the interiors of the
chambers, and the corresponding normal fans.

Pa
Pg

Pd

Ph

Pf

Pc

Pb

Figure 3.1: Chambers in the chamber complex and the corresponding normal fans

In this example, for each normal fan associated to the chamber complex, we are going
to present the toric varieties of the normal fans.

• Consider the normal fan N(Pa) of the polytope Pa such that this normal fan is
associated to the chamber of Pa.
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Pa

Cones Generators
σ1 e1 = (1, 0)
σ2 e2 = (0, 1)
σ3 −e1 = (−1, 0)
σ4 −e2 = (0,−1)
σ12 e1 = (1, 0), e2 = (0, 1)
σ23 e2 = (0, 1),−e1 = (−1, 0)
σ34 −e1 = (−1, 0),−e2 = (0,−1)
σ14 e1 = (1, 0),−e2 = (0,−1)

From Example 1.2.1.3, we know that the toric variety XN(Pa) = P1 × P1 which is
also the associated variety of the chamber CPa.

• Consider the normal fan N(Pd) of the poytope Pd that is the normal fan associated
to the chamber CPd

. Please also note that the chamber CPd
is a face of the chamber

CPa.

Pd

e2

−e2

Cones Generators
σ1 e2 = (0, 1)
σ2 −e2 = (0,−1)

The toric variety of the associated fan and the associated chamber CPd
is

XN(Pd) = P1.

• Consider the polytope Pc and it is normal fan N(Pc) that are associated to the
chamber CPc.
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Pc

e1−e1

Cones Generators
σ1 e1 = (1, 0)
σ2 −e1 = (−1, 0)

The toric variety of the fan NPc that is associated toric variety of the chamber CPc

is XN(Pc) = P1.

• Consider the normal fan N(Pf ) of the polytope Pf . N(Pf ) is also the normal fan
associated to the chamber CPf

.

Pf

Cones Generators
σ1 e1 + e2 = (1, 1)
σ2 −e1 = (−1, 0)
σ3 −e2 = (0,−1)
σ12 e1 + e2 = (1, 1),−e1 = (−1, 0)
σ13 e1 + e2 = (1, 1),−e2 = (0,−1)
σ23 −e1 = (−1, 0),−e2 = (0,−1)

Since the normal fan N(Pf ) is the same as the normal fan N(∆2) where ∆2 is
the 2 dimensional simplex, by the remark 1.2.1.7, the toric variety of N(Pf ) is
XN(Pf ) = P2.

• Consider the polytope Pg and its normal fan NPg that is associated to the chamber
CPg .

55



Pg

Cones Generators
σ1 e1 + e2 = (1, 1)
σ2 e2 = (0, 1)
σ3 −e1 = (−1, 0)
σ4 −e2 = (0,−1)
σ12 e1 + e2 = (1, 1),e2 = (0, 1)
σ14 e1 + e2 = (1, 1),−e2 = (0,−1)
σ23 e2 = (0, 1), −e1 = (−1, 0)
σ34 −e1 = (−1, 0),−e2 = (0,−1)

The normal fan N(Pg) is the star subdivision of the fan N(Pf ) along σ12 ∈ N(Pf )
by Definition 1.2.1.8 as the generator of σ2 ∈ N(Pg) is the sum of the generators of
σ12 ∈ N(Pf ), and the cones σ12, σ23 ∈ N(Pg) gives a subdivision of σ12 ∈ N(Pf ).

Thus the toric variety XN(Pg) is the blow up of P2 at one point by Proposition 1.2.1.11.
One can also observe that the fan N(Pg) is a rotated version of the normal fan of
the Hirzebruch surface H1.

• Consider the normal fan NPh
of the polytope Ph that is the associated normal fan

of the chamber CPh
.

Ph

Cones Generators
σ1 e1 + e2 = (1, 1)
σ2 e1 = (1, 0)
σ3 −e1 = (−1, 0)
σ4 −e2 = (0,−1)
σ12 e1 + e2 = (1, 1),e1 = (1, 0)
σ14 e1 + e2 = (1, 1),−e2 = (0,−1)
σ24 e1 = (1, 0), −e2 = (0,−1)
σ34 −e1 = (−1, 0),−e2 = (0,−1)

The normal fan N(Ph) is the star subdivision of the fan N(Pf ) along σ13 ∈ N(Pf ) by
Definition 1.2.1.8. Thus, the toric variety XN(Ph) that is associated to the chamber
CPh

is the blow up of P2 at one point by Proposition 1.2.1.11. When we consider
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N(Ph), we also see that it is a rotated version of the normal fan of the Hirzebruch
surface H1.

• Consider the polytope Pb and its normal fan N(Pb) that is associated to the chamber
CPb

.

Pb

Cones Generators
σ1 e1 + e2 = (1, 1)
σ2 e1 = (1, 0)
σ3 −e1 = (−1, 0)
σ4 −e2 = (0,−1)
σ5 e2 = (0, 1)
σ15 e1 + e2 = (1, 1),e2 = (0, 1)
σ12 e1 + e2 = (1, 1),e1 = (1, 0)
σ24 e1 = (1, 0), −e2 = (0,−1)
σ34 −e1 = (−1, 0), −e2 = (0,−1)
σ35 −e1 = (−1, 0),e2 = (0, 1)

The fan N(Pb) is the star subdivision of the fan N(Pa) along the cone σ12 ∈ N(Pa)
by Definition 1.2.1.8. Thus the toric variety XN(Pb) associated to the chamber CPb

is the blow up of P1 × P1 at one point.

Pa

P1 × P1

Pg

H1

Pd

P1

Ph H1

Pf

P2

Pc

P1

Pb

P1 × P1 blown up at one point

Figure 3.2: The chamber complex with the normal fans and toric varieties associated to
the chambers
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When we consider the chamber CPa in Figure 3.2, we see that its closure has faces
CPd

and CPc. While the toric varieties XN(Pc) and X(N(Pd)) are P1, the toric variety
XN(Pa) is P1 × P1, which also corresponds to the normal fan of the Minkowski sum of
the polytopes having normal fans N(Pc) and N(Pd). The reason is that the polytopes Pd
and Pc are orthogonal so that their normal fans and we have N(Pa) = N(Pc)×N(Pd) as
the normal fan of the sum. By Proposition 1.2.1.4, the toric variety of N(Pc)×N(Pd) is
XN(Pc) ×XN(Pd).

When we consider the chamber CPg in Figure 3.2, we see that its closure has faces CPd

and CPf
and their associated toric varieties are XN(Pd) = P1 and XN(Pf ) = P2. Moreover,

the toric variety XN(Pg), that is the toric variety of the normal fan of the Minkowski
sum of Pd and Pf , is the blow up of P2 at one point since N(Pg) is a star subdivision of
N(Pf ).

Now, consider the top dimensional chamber CPb
of the chamber complex. The corre-

sponding toric variety is the blow up of P1 × P1 at one point which can also be expressed
as blow up of H1 at one point as N(Pb) is a star subdivision of N(Pg) along the cone
σ14 ∈ N(Pg).

Theorem 3.0.0.2. Let A ∈ Rm×d be a given matrix of full rank with m > d. If there
exists a, b, c ∈ Rm with nonempty Pa ⊂ Rk × {0} ⊂ Rd, Pb ⊂ {0} × Rd−k ⊂ Rd, and
Pc = Pa + Pb, then the toric variety associated to the chamber C(Pc) of the chamber
complex of A is

XN(Pc) = XN(Pa) ×XN(Pb)

where XN(Pa) and XN(Pb) are toric varieties associated to the chambers CPa , CPb
respec-

tively.

Proof. Since there exist points a, b ∈ Rm such that the polytopes Pa and Pb live in
orthogonal subspaces of Rd, the matrix A is of the form

A =

 B1 0
0 B2

C D


for some matrices B1, B2, C,D such that, some polytopes we can obtain by moving the
half spaces that A defines will have orthogonal one dimensional cones in their normal
fans.

Moreover, the fact that there exist points a, b ∈ Rm which give such non-empty
polytopes Pa, Pb means that the chamber complex CA of A has the chamber CPa that is
the set of points v ∈ Rm for which polytopes Pv have the same normal fan as Pa, and
the chamber CPb

that is the set of points w ∈ Rm for which polytopes Pw have the same
normal fan as Pb.

Moreover, the assumption that there is a vector c ∈ Rm such that Pc = Pa + Pb says
that the chamber complex CA has the chamber CPc such that the closure of CPc contains
the chambers CPa and CPb

as Pa and Pb are the Minkowski summands of Pc.
By the assumption, there are polytopes Pa and Pb we can obtain that are living in the

orthogonal spaces so that, the outer normal vectors of their defining half spaces live in the
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orthogonal spaces. Thus, for such Pa and Pb, N(Pa) and N(Pb) also live in the orthogonal
spaces. Moreover, as the points x ∈ Pa are of the form x = (x1, . . . , xk, 0, . . . , 0) and
points y ∈ Pb are of the form (0, . . . , 0, y1, . . . , yl), their Minkowski sum is

Pc = Pa + Pb = {x+ y : x ∈ Pa, y ∈ Pb} = Pa × Pb.

Vertices of Pc are pairs (vi, vj) where vi is a vertex of Pa and wj is a vertex of Pb. We
also know that the set of one dimensional cones of N(Pc) is the union of the set of one
dimensional cones of N(Pa) and N(Pb), and for each vertex (vi, wj), N(Pc) will contain
the face cone generated by gens(N(vi, Pa)), gens(N(wj , Pb)) such that

N(Pa + Pb) = N(Pc) = N(Pa)×N(Pb) ⊂ Rk × Rl.

Recall that N(Pa) is the normal fan associated to CPa , N(Pb) is the normal fan as-
sociated to CPb

and N(Pc = Pa + Pb) is the associated normal fan of CPc . Thus by
Proposition 1.2.1.4,

XN(Pc) = XN(Pa) ×XN(Pb).

Theorem 3.0.0.3. Let A ∈ Rm×d be a given matrix. If there exist points a, b, c ∈ Rm
such that Pa = ∆k, Pb = ∆l ⊂ Rd, k ≥ 8, l = k

2 − 3 ∈ N>0, and Pc = Pa + Pc 6= Pa × Pb,
then the associated toric variety XN(Pc) of the chamber CPc is the blow up of Pk at one
point.

Proof. Since there exists a, b, c ∈ Rm such that Pa = ∆k and Pb = ∆l are nonempty and
Pc = Pa+Pb, the chamber complex CA of A has the chambers CPa , CPb

, CPc . Furthermore,
since Pc = Pa + Pb 6= Pa × Pb, the polytopes Pa = ∆k and Pb = ∆l are not orthogonal.
Recall that a standard n-simplex ∆n has the outer normal vectors that are the rows of
the following matrix: 

1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 0 1
−1 −1 . . . −1


(n+1)×n

.

Thus, the matrix A has the following sub-matrices:

B1 =

[
I(k) 0
−1 0

]
(k+1)×d

and B2 =

[
I(l) 0
−1 0

]
(l+1)×d

where I(i) ∈ Ri×i where i = k, l is the identity matrix and as k > l, l = d − 2, B2 is
a sub-matrix of B1 . Each row of the matrix B1 is the generator of a one dimensional
cone of the normal fan N(Pa) and each row of the matrix B2 is the generator of a one
dimensional cone of N(Pb).

59



Since the normal fan the Minkowski sum of two polytopes is a common refinement of
normal fan of summands, each row of the matrix B2 and the last row of B1 is a generator
of a one dimensional cone of N(Pc).

Recall that for an n-simplex ∆n where n > 2, the intersection of the half space H,
whose outer normal vector is (−1, . . . ,−1) ∈ Rn, with any n− 2 hyperplanes that have
rows of I(n) ∈ Rn×n as outer normal vectors give a vertex of ∆n (not all vertices). This
means that for each n− 2 subset of I(n) ∈ Rn×n, the normal fan of ∆n contains cones
generated by {k, (−1, . . . ,−1) : k ∈ K, (−1, . . . ,−1) ∈ Rn}.

Thus, for each k − 2 subset K of I(k), the normal fan N(Pc = ∆k + ∆l) contains
cones generated by

{(k, 0), β1 : k ∈ K, (k, 0) ∈ B1 β1 = (−1, . . . ,−1, 0, . . . , 0) ∈ B1} .

Moreover the one dimensional cone generated by β2 = (−1, . . . ,−1, 0, . . . , 0) ∈ B2 is also
contained in N(Pc), and β2 = β1 +

∑k
i=l+1B1(i) where B1(i) is the ith row of B1, it gives

a star sub-division of N(Pa) along the cone

σ = Pos(β1, B1(i) : l =
k

2
− 3 < i ≤ k) ∈ N(Pa)

by Definition 1.2.1.8.
Since N(Pc) = ∆k + ∆l is a star subdivision of N(Pa) along

σ = Pos(β1, B1(i) : l =
k

2
− 3 < i ≤ k) ∈ N(Pa),

and XN(Pa) = Pk, XN(Pc) is a blow up of Pk at one point by Proposition 1.2.1.11.

3.0.1 Toric Variety of the Chamber Complex

In this section, we consider the toric variety of a given chamber complex instead of the
toric variety of the normal fans associated to each chamber.

By definition, the chambers of a given chamber complex have no lines going through
them such that they are strictly convex polyhedral cones. Moreover, any chamber complex
is a polyhedral complex, i.e., the satisfy the conditions of the definition of a fan. Thus we
can mention the toric variety of the chamber complex which is a fan such that the cones
of the fan are chambers.

Remark 3.0.1.1 (Cox, Little, Schenk [4]). Given a toric variety XΣ of a fan Σ, the
number of fixed points of the action γ : T ×XΣ → XΣ is the number of top dimensional
cones of the fan Σ.

Theorem 3.0.1.2. Let CA be the chamber complex of a given matrix A ∈ Rm×d.The
number of top dimensional chambers of CA is the number of fixed points of the natural
action γ : T ×XCA

→ XCA
.
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Proof. As we mentioned before, by the definition, a chamber complex is a polyhedral
complex and each chamber it contains is a strictly convex rational cone so that the
chamber complex is a fan. By Remark 3.0.1.1, The number of top dimensional chambers
that CA has is the number of fixed points of the torus action on the variety XCA

.
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